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1 
Semiconductor Materials and 

Physics 
  

 

 

INTRODUCTION 

 

The growth in Electronics and Communication industry  has been tremendous with the 

invention of transistors and integrated circuit technology. The major cause of reduction in size, 

delay, power, weight and cost in all areas of Electronics and Communication is the result of 

improved devices and technology. Semiconductors, metals and insulators are required for 

fabricating electronic devices, but the crucial role is played by semiconductors at present. 

 

1.1   SEMICONDUCTOR MATERIALS 

 

Semiconductors are materials with electrical conductivity between that of conductors and 

insulators. Semiconductors, in general, have conductivity between 10-8-1cm-1 and 103 -1cm-1 

(resistivity between 108 cm and 10-3 cm). The conductivity of a semiconductor can be varied 

over a wide range, by the process of doping. Conductivity of doped semiconductors remain 

almost independent of temperature  over a wide range of temperature. These properties make 

semiconductors suitable for fabricating electronic devices. 

 

1.1.1   Elemental and Compound Semiconductors 

 

Semiconductors which are constituted by single species of atoms are called elemental 

semiconductors. Fourth group elements, Silicon (Si) and Germanium (Ge) are elemental 

semiconductors. 

      As a semiconductor material, silicon has several advantages over other materials. 

1. Silicon is abundant in nature. Well established procedure and technology are available 

for its purification, crystal growth and processing. 

2. Compared to germanium, silicon devices can be operated at higher temperature due to 

its wider band gap. 

3. A stable oxide (SiO2) is available for silicon which can be used: 

 

a. as mask during fabrication process, 

b. for isolation, 

c. as passivation layer, 

d. as gate oxide in MOSFETs. 

     Because of these, the fabrication process is simpler for silicon devices. Therefore, most of 

the Integrated Circuits (ICs) and other electronic devices are made of silicon. 
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     A semiconductor constituted by two or more different species of atoms is called compound 

semiconductor. 

     There are lot of semiconductors which are compounds of two or more elements. Following  

are some of the compound semiconductors. 

III-V compounds: Compounds formed by elements from third and fifth groups are called 

III- V compounds. 

II-VI compounds: Compounds formed by elements from second and sixth groups are called II-

VI compounds. 

     A compound semiconductor consisting of two elements is called binary compound. Elements 

from fourth group also form binary compounds as listed in Table 1.1. In addition to these, 

compounds of three and four elements are also available. Compounds of three elements are 

called ternary compounds e.g., GaAsP, AlGaAs. Compounds of four elements are called 

quaternary compounds e.g., AlGaAsP, InGaAsP. 

 

Table 1.1 List of binary compounds 

 

IV group compounds III-V compounds II-VI compounds 

SiC AlP ZnS 

SiGe AlAs ZnSe 

 AlSb ZnTe 

 GaP CdS 

 GaAs CdSe 

 GaSb CdTe 

 InP  

 InAs  

 InSb  

  

     The properties of compound semiconductors (conductivity, band gap. etc) can be varied by 

varying the percentage composition of its costituent elements. Semiconductor materials most 

commonly used for fabricating some of the electronic devices are listed in Table 1.2. 

 

1.2   INTRODUCTION TO QUANTUM MECHANICS 

 

Many of the observed phenomena such as discrete spectral lines emitted by heated gas etc., 

could not be explained by classical mechanics. It also fails to describe microscopic phenomena 

related to semiconductors such as energy bands separated by band gaps etc. To analyze 

microscopic phenomena in semiconductor materials, application of quantum mechanics is 

essential. This section provides a brief introduction to quantum mechanics. Table 1.3 compares 

classical mechanics with quantum mechanics. 
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Table 1.2 Semiconductor Devices and Materials used for their Fabrication 

 

Device Material 

Diodes, Transistors Si, Ge 

FETs, Monolithic IC's Si 

LEDs GaAs, GaP, GaAsP 

Solar cells Si, GaAs 

Photo detector InSb, CdSe 

Fluorescent screen (TV,-CRT, etc.) ZnS 

Gunn diode (microwave diode) GaAs,InP 

Semiconductor laser GaAs, AlGaAs 

SCR, TRIAC Si 

 

Table 1.3 Comparison Between Quantum Mechanics and Classical Mechanics 

 

Classical mechanics Quantum mechanics 

1. Deals with macroscopic objects. These 

can be defined with infinite details. 

Quantum mechanics abandons this 

hypothesis of infinite detailed experience. 

2. Elements of observation and calculation 

are identical. 

Elements of observation and calculation 

need not be identical. Quantum mechanics 

allows greater freedom of abstract 

notations which may not have immediate 

physical meaning.  

3. No restriction in the accuracy of 

measurement or calculation. 

Sharp prediction of observation is 

prevented by Heisenberg's Uncertainty 

principle. 

4. State of physical system is described by 

dynamical variables, (dynamical 

variables are properties associated with a 

physical system such as position, 

momentum, etc.) 

State is described by state function . 

 

1.2.1 Heisenberg's Uncertainty Principle 

 

Heisenberg's uncertainty principle predicts the uncertainty in simultaneous measurement of any 

pair of variables with dimension ML2/T such as position and momentum, energy and time etc., 

as 

    P x  h       (1.1) 

    E t  h       (1.2) 
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Where,   h = 
2

h


 and h  is Planck's constant 

  P is uncertainty in momentum 

  x is uncertainty in position 

  E is uncertainty in energy 

  t is uncertainty in time. 

 

Example 1.1  A particle of mass 1g moves with a velocity of 150 m/s. The momentum of the 

particle is not known to an accuracy more than 10-5 percentage. What is the limiting value of 

accuracy in simultaneous measurement of position? 

 

  Momentum    P    = mv = 10-3 x 150 = 0.15 kgm/s 

    P  = l0-5 % of P 

           = 0.15  
510

100

−

 = 1.5  10-8 kgm/s 

       P . x    = 
2

h


 

                        x   =  ;
2 .

h

P 
 h  = 6.62  10-34 Js 

                       = 
34

8

6.62 10

2 1.5 10

−

−



 
  = 7.02  10-27m 

 

 

 

i.e., the uncertainty about the position of the particle is 7.02  10-27m. 

 

1.2.2   Postulates of Quantum Mechanics 

 

(1) There exists a state function (x,y,z,t), which contains all the measurable information 

about each particle of a physical system. 

(2) Operators are used to bridge between states and measurement. Every dynamical 

variable has a corresponding linear operator. This operator is used on the state function 

to obtain measurable information about the system. The dynamical variables and 

corresponding operators are given in Table 1.4. 

 

Table 1.4 Dynamical Variables and Quantum Mechanical Operators 

 

Dynamical variable Operator 

Position x x 

Momentum Px 
.

j x





h
 

Total energy 

j t

− 



h
 

Potential energy V(x) 
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(3) (a) The state function (x,t) and its space derivative 
x




are continuous, finite and single 

valued for all values of x. 

      (b) The function  is normalised 

   

  i.e,  * 1dx


−

=    or  2| | 1dx


−

=     (1.3) 

 

       where * is the complex conjugate of . 

       In three dimension, 

 

   * 1dv =        (1.4) 

 

where dv is an elemental volume about the point where * is determined and * is the 

probability density. Equation (1.4) shows that the probability of finding the particle 

anywhere in the volume is unity. 

(4)  The average value of a dynamical variable (y) corresponding to state function  is given by 

 

   <y> = * y dy 


−

                            (1.5) 

 

< y > is the average value or expectation value over many observations. 

(5) The operator for any measurement, for which an operator is not postulated, is determined by 

expressing the measured quantities in terms of the basic variables. Then, substitute the 

operators for the basic variables. 

 

1.2.3 Schrodinger Wave Equation 

 

Schrodinger wave equation is the fundamental equation in quantum mechanics, (just like 

Newton's laws of motion in classical mechanics). The one dimensional Schrodinger wave 

equation is represented by  

 

   
2 2

22

h
jh V

t m x

 


 − 
= +

 
      (1.6) 

 

Equation (1.6) may be separated into time dependent and time independent equations as follows 
 

      
( )

( )

jh t
E

t t





− 
=


     (1.7) 

   
2

2 2

2
( ) 0

m
E V

x





+ − =

 h
      (1.8) 

 

where, (x,t) = (t) (x) and E is the kinetic energy of particle. 
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1.2.4 Schrodinger Equation Applied to a Free Particle 

 

 A particle moving in a region of constant potential energy is called a free particle. Such 

a particle is not subjected to any force. For such a particle V = 0. and Schrodinger wave 

equation (time independent) reduces to  

    
2

2

2
0

d
k

dx


+ =                                    (1.9) 

where    k  =
2 2mE P 


= =

h h
     (1.10) 

and is called the propagation constant or wave vector.  

Equation (1.9) has solution 

     (x) = Aejkx 

 

so that * = AA* = |A|2 is independent on x i.e., probability of finding the particle everywhere 

is same and wave function does not provide any information about precise location of the 

particle. 

 

1.2.5  Schrodinger Equation Applied to a Particle in a Potential Well 

 

Consider an electron in a one dimensional potential well of width a as shown in Fig. 1.1. The 

potential at the sides of the well is  and inside the well is zero. The wave function of the 

particle may be obtained by solving the time independent Schrodinger wave equation. 

 

 

 

 

 

 

 

 
 

Fig. 1.1 An infinite potential well of width a 

 

The Schrodinger equation inside the well may be written as 

 

    
2

2

2
0

d
k

dx


+ =       (1.11) 

where,      k2  =
2

2 2

2 8mE mE

h


=

h
               (1.11a) 

 

This equation has solution of the form 

     x = A sin kx + B cos kx     (1.12) 

Since  = 0 at x = 0; B = 0 

             x = A sinkx ;                (1.12a) 

The electron cannot penetrate the infinite potential barrier. 

V= V= 

V=0 

0 x a 
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i.e., at x = a, (a) =0, so that 

    Asinka = 0 

       ka  = n 

           k2  = 
2 2

2

n

a


      (1.13) 

   where,           n =  1,2,3, . . .  

                                    E = 
2 2

28

h k

m
  (by equation (l.lla))        (1.14) 

     Substituting for k2 from equation (1.13) in equation (1.14), energy of electron in nth  state is 

           En = 
2 2

28

n h

ma
       (1.15) 

     From normalisation condition for the wave function (equation (1.3)) 

   * 2

0

sin 1

a

AA kxdx =       (1.16) 

 ie.,  2

0

1 cos 2
1

2

a
kx

A dx
−

=  

   2

0

sin 2

2 4

a
x kx

A
k

 
− 

 
 

 

But sin2ka = 0  Q   ka = n 

         
2 2

; sin
n x

A
a a a


= =     (1.17) 

 

The normalised wave function in the lowest three energy states are 

 

 1

2
sin ;

x

a a


 =  half  cycle variation over a 

2
a

 
= 

 
           (1.17a) 

 2

2 2
sin ;

x

a a


 =   full wave variation over a ( a = )            (1.17b) 

 3

2 3
sin ;

x

a a


 =  three half cycle variation over a 

3

2
a

 
= 

 
   (1.17c) 

For nth state a =  
2

n
                                       (1.17d) 

The energy levels and corresponding wave functions are shown in Fig. 1.2. 
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Fig. 1.2 First three energy levels and wave functions for electrons in an infinite                

potential well 

   

  a = 
2

n
  (by equation (1.14)) 

  k = 
n

a


(by equation (1.13)) 

  E = 
2

21

2 2

P
mv

m
=        (1.18) 

  E = 
2 2

28

h k

m
  (by equation (1.14)) 

      = 
2 2

2

k

m

h
        (1.19) 

From equations (1.18) and (1.19), 

P = kh   where P is the electron momentum and k is the wave vector or wave number. 

 

1.2.6. Schrodinger Equation Applied to a Particle in a Potential Wall 

 

This considers the probability of locating an electron in a finite potential wall (potential wall) of 

height V0 (V0 > E, energy of the electron). 

     Consider an electron with total energy E moving in region 1 of potential energy zero as 

shown in Fig. 1.3.                                         

     At x = 0, the potential energy increases to V0. Schrodinger equation in region 1 

   
2

21
1 12

0
d

k
dx


+ =  

      
2

2

1 2

8 mE
K

h


=       (1.20) 

      (a) Energy levels              (b) Wave function  
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Fig. 1.3 Electron movement towards a potential wall 

 

The solution to equation (1.20) is 

 

   1 = C sin k1x + Dcosk1x      (1.21) 

 

In region 2, the Schrodinger wave equation becomes 

   
2 2

1
0 22 2

8
( ) 0

d m
E V

dx h

 
+ − =      (1.22) 

   
2

2 22
2 2 22

0;
d

k k
dx


− =   

2

0

2

8 ( )m V E

h

 −
=    (1.23) 

The solution to this equation is 

    2 = 2 2k x k x
Ae Be

−
+      (1.24) 

By postulate 3(a) ( and 
d

dx


 are continuous) 

     1   =  2 and                                                             (1.25) 

   1 2d d

dx dx

 
=       at x = 0                                                                 (1.25b) 

 must be finite as x → 

     B = 0 

Using equation (1.21) 

   Csin k1x + Dcos k1x |x=0 = 2k x
Ae

− |x=0     

 i.e.,  D = A 

Differentiating equations (1.21) and (1.24) and applying condition (1.25b) 

  k1Ccos k1x - k1D sin k1x |x=0  = -k2
2k x

Ae
− |x=0  

     k1C = -k2A 

     C  = 2

1

k A

k

−
 

     1  = 2

1

A
k

k
− sin k1x + Acos k1x  (1.26a) 

     2 = 2k x
Ae

−      (1.26b) 

 

Incident wave of 

electron having 

energy E 
Potential Wall 

V0>E 

Region 1 Region 2 x = 0 
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Fig. 1.4 Incident and penetrating wave into a potential barrier 

 

     The above solution shows that there is a finite probability that electron exists in region 2 

where the potential energy barrier is higher than the energy of electrons as shown in Fig. 1.4. 

     Let an electron in region 1 be separated from region 3 by a finite potential energy barrier               

(Vo > E) of finite width as shown in Fig. 1.5. Then, it can be shown that there will be a finite 

probability that the electrons penetrate into region 3. This process is called tunneling. The 

probability of tunneling increases with decrease in width (d) of the barrier. This principle is 

made use of in the study of tunnel diodes, Zener break down, etc.  

 

 

 

 

 

 

 

 

 

 

Fig. 1.5 Potential barrier of finite height and width 

 

Example 1.2  For an electron in a one dimensional potential well of infinite height and width 2 

A, calculate the expectation value of position (a) and momentum (Px). Assume that potential 

inside the well is zero. 

 

Solution 

 

 

 

 

 

 

 

 

Fig. Ex. 1.2 Infinite potential well 

V = V0 

Region 1 

V = 0 

Region 2 Region 3 

V = 0 

 

     x = 0               d                → x 

 

V = ∞ V = ∞ 

V = 0 

0        → x            a 

 

Incident wave of 

electron having 

energy E 
Potential Wall 

V0>E 

Region 1 Region 2 x = 0 

V = 0 

2 = 2k x
Ac

−  

Incident wave                V0 
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Expectation value of x = < x > = *

0

a

x dx   

From equation (1.17) 

            * 22
sin ,

n x

a a


  =  =  

   x 
0

2
sin 0

a
n x

x dx
a a

 
=   

 
  

    2

0

2
sin

a
n x

x dx
a a


=   

    
0

2
1 cos

2

2

a

n x

a
x dx

a

  
−   

  =
 
 
 

  

    
0 0

1 1 2
cos

a a
n x

xdx x dx
a a a


=    

    
2

0

0

2 2
sin

1 1
. 1. sin

2 2 2

a

a
n x n x

x a aax a dx
a a n n

 

 

 
  

= − −  
   

 

  

    
2

0

2
cos

1 2
.sin .

2 2 2 2

a
n x

a ax n x a a

a n a n n




  

 
  

= − +  
  

 

 

but sin 2n = 0 and cos 2n = 1 

    < x > = 1.0
2

a
A=   

   < Px >  *

0

a

dx
j x

 


=


h
 

                           
0

2
sin sin

a
n x n x

dx
ja a x a

    
=   

   


h
      

                           

0

2
sin sin cos sin

a

n x n x n x n n x
dx

ja a a a a a

     
=  −   

 


h
      

                           2

0

2 1 2
sin

2

a

n x n n x
dx

ja a a a

   
= − 

 


h
      

               2

0

2 2
sin cos

2 2

a
n x n n x a

ja a a a n

  



 
= −   

 

h
      

    2

0

2 1 2
sin cos 0

4

a
n x n x

ja a a

  
= − = 

 

h
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1.3   STATISTICAL MECHANICS 

 

The objective of statistical mechanics is to treat the behavior of very large number of identical 

systems in a probabilistic fashion without going into the details of each and every individual 

component of the ensemble (collection of physical systems). The result obtained by this 

approach predicts the average behavior of the system based on the most probable values of the 

properties. 

The most important characteristic of statistical mechanics is the distribution function. The three 

distribution functions that govern the distribution of particles among the various available 

energy levels are: 

 

(1) Maxwell-Boltzmann distribution function 

(2) Fermi-Dirac distribution function and 

(3) Bose-Einstein distribution function. 

 

1.3.1 Maxwell-Boltzmann Distribution Function 

 

Maxwell-Boltzmann distribution is applicable to classical particles such as gas molecules. These 

particles are distinguishable1 and any number of them can occupy a given energy state, i.e., 

Pauli's exclusion principle is not applicable. 

     For a system with a continuous distribution of energy, the probability f(E) that a state E is 

occupied is given by Maxwell-Boltzmann distribution as 

 

  f(E) = B(T)e -E/kT                                 (1.27) 

 

where B(T) is a constant and T is the absolute temperature. 

 

1.3.2 Fermi-Dirac Distribution Function 

 

This distribution is applicable to indistinguishable particles at thermal equilibrium, which obey 

Fault's exclusion principle. The Fermi-Dirac distribution function is given by 

   f(E) = 
( )/

1

1 FE E kT
e

−
+

      (1.28) 

where,   f(E)  represents the probability of occupancy of available energy state E at 

  absolute temperature T  

  EF the Fermi energy level or Fermi level and  

  k the Boltzmann constant. 

 

1 A set of identical particles are said to be distinguishable if they do not interact with each other except for occasional 

random collisions. Separation between particles will be large compared to de-Broglie wave length ( = h/mv). There 

is no interaction between wave functions of such particles. A set of particles is said to be indistinguishable if 

separation between particles is comparable to or less than the de-Broglie wave length. Wave functions of such 

particles interact with each other. 
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   f(EF) = 
( )/ 0

1 1 1

1 1 2FE E kTe e−
= =

+ +
  for T > 0 

 

i.e., the probability of occupancy of Fermi level is half, for any material under thermal 

equilibrium at any temperature other than 0 K (T > 0 K). Fermi level is a conceptual energy 

level, at which the probability of occupancy would be half, if it exists. Fermi level may be 

considered as the energy level corresponding to average energy of electron in a semiconductor.                                                         

 When E  - EF  kT 

 

   f(E) ( )/FE E kTe− −
  = / /FE kT E kTe e−   

                   = B(T) /E kTe−  

i.e., Fermi-Dirac distribution function decays to Maxwell-Boltzmann distribution. 

     In the case of a semiconductor, EC - EF >> kT implies that the electron concentration is low. 

The probability of occupancy of quantum states in the conduction band is small in lightly doped 

semiconductor. Thus, interaction between wave functions of particles become negligible or 

particles become distinguishable. So, Pauli's exclusion principle is of no significance. This is 

called diluteness condition. In such case Fermi-Dirac distribution function may be replaced with 

Maxwell-Boltzmann distribution function. Particles that obey Fermi Dirac statistics are called 

fermions. Eg. electrons and holes in semiconductors. For more details of Perm Dirac 

distribution function, see section 1.8. 

 

1.3.3 Bose-Einstein Distribution Function 

 

Some particles like photons and phonons are indistinguishable, but do not obey Pauli's 

exclusion principle. The distribution function for indistinguishable particles that do not obey 

Pauli's exclusion principle is given by  

  f(E) = 
( )/

1

1BE E kT
e

−
−

         (1.29) 

Equation (1.29) is called Bose-Einstein distribution function. For particles like helium atoms 

parameter EB is obtained from the condition that the total number of particles in the system is 

constant. For particles like photons and phonons, which has no rest mass, these conditions are 

not valid because photons and phonons can be destroyed and recreated.  

 For such particles EB = 0 and Bose-Einstein statistics takes the form 

  f(E) = 
/

1

1E kTe −
                     (1.30) 

 

1.3.4 Photons and phonons 

 

     Pilot on is a quantum of electro-mechanical energy whereas phonon is a quantum of 

mechanical energy of lattice vibration.  

     The momentum associated with a photon of energy h is 
h

c


 and that with a phonon is 

h

u


 

where c is the velocity of light and u is the velocity of sound in solid medium. Since, u<<c, the 

momentum associated with a phonon is very large compared to that of a photon. The rest mass 

of photon and phonon are zero and these particles obey Bose-Einstein statistics.  
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1.4   CRYSTALLINE SOLIDS AND ENERGY BANDS 

 

     The valence electrons in an atom determine its chemical behavior and influence the type of 

bound formed between the atoms that result in the formation of molecules and solids. The 

strength with which the atoms are bound together determines the phase of the substance (gas. 

liquid, solid etc). When atoms of a substance are separated by large distance, they form a gas. 

When the average distance is comparable to the size of the atom. the substance behave as a 

liquid. When the atoms are brought, close together so that their outer electron orbits overlap, 

very strong interaction between atoms results which binds them together as a solid. 

 

1.4.1 The Bonding of Atoms 

 

A solid is formed by the chemical bonding of large number of atoms together. In this process, 

the total energy of the system is reduced. The energy required to separate 1 gram atom (or 1 

mole) of a solid into individual atoms is known as cohesive energy. This energy is different 

from binding energy, which denotes the strength of a bond and is the negative of (lie energy 

required to break the bond. e.g.. binding energy of electron in ground state of hydrogen atom is 

13.6 eV. This also implies that this much energy is lost during formation of bond. 

     When atoms are brought, together to form a molecule, two kinds of forces become 

important: attractive and repulsive. As the separation is decreased the attractive force comes into 

play first. But as the spacing is decreased, the other orbits of electrons overlap and repulsive 

force also arises. The chemical bond between atoms is formed at equilibrium spacing where the 

two forces balance each other and the total potential energy reaches its minimum. Depending on 

(lie nature of interaction between atoms, there are four different types of chemical bonding: 

ionic covalent, metallic and molecular. 

Ionic bond: The ionic bond is formed predominantly between electronegative and 

electropositive elements e.g., NaCl. In ionic bonding the columbic forces (attractive between 

Na+ and Cl- ions) pull the lattice together until a balance is reached with the repulsive forces at 

equilibrium. 

    The ionic bond is fairly strong. Ionic substances are usually hard and have high melting and 

boiling points. Since the valence electrons are tightly bound to the respective ions, the 

movement of these electrons under an applied electric field is not possible and most ionic 

substances arc insulators at room temperature. At higher temperature the ions themselves 

become mobile and give rise to ionic conduction. 

Covalent bond:  The covalent bond is formed by sharing of electrons between the bonded 

atoms. This sharing results from the overlap of bonding orbitals. The covalent bond is a bond 

between atoms of the same polarity hence it is known as a homopolar bond.  

     Unlike ionic bond, the covalent bond is highly directional. The bond is very strong and the 

material formed has very high melting and boiling points. The covalently bonded substances are 

relatively poor conductors of electricity at normal temperatures. 

Metallic bond:  The metallic bond is formed between electropositive elements. The valence 

orbit of all metal atoms is either an s subshell or a p subshell with usually 1 or 2 electrons. The 

size of the outer shells in these atoms is rather large and the valence electrons are not as tightly 

bound to the nucleus as in non-metals. In metals, the outer electron of each atom is contributed 

to the crystal as a whole. The solid is made up of ions immersed in a sea of free electrons. The 

forces holding the lattice together arises from the interaction ^between the positive ion core and 

the sea of electrons. 
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     In metals, the bonds remain unsaturated and a large number of atoms can be held together by 

the mutual sharing of electrons. The density of electrons is considerably lower than that allowed 

by Pauli's exclusion principle. The number of states available is more than the number of 

electrons. As a result, the electrons are able to move freely through the metal without 

experiencing any significant change in their energy. Therefore metals are good conductors of 

electricity. There are differences in the bonding in different metals. 

Molecular bond:  This bond is seen in inert gases and in some organic molecules. The binding 

force arises from the dipolar forces between the bonded species. The dipolar forces are quite 

weak and the substances exhibiting this type of bonding are characterized by low melting and 

boiling points, and are poor conductors of electricity. 

 

1.4.2 Crystalline State 

 

Solid materials can be divided into two categories-amorphous and crystalline. In amorphous 

materials, atoms are arranged in an irregular and random manner like the molecules in a liquid, 

e.g., glass. A crystalline solid has a regular periodic arrangement of atoms. If this regular 

arrangement of atoms extends over the whole sample, the material is said to be single 

crystalline. A polycrystalline material consists of groups or clusters of single crystals of various 

orientations that are joined together as shown in Fig. 1.6. The line separating the crystal section 

of two different orientations is known as grain boundary. 

 

1.4.3 Crystal Structure 

 

Extremely pure semiconductor in crystalline form are used for fabricating electronic devices. A 

crystal is a three dimensional structure composed of atoms arranged on a lattice. A lattice is a 

periodic arrangement of points in space. It is defined by three fundamental translation vectors a, 

b and c. The arrangement of lattice points looks the same from any point r as it looks from any 

other point r' given by 

                            r' = r + n1a + n2b + n3c = r + T 

where n1, n2, n3 are integers. The vector T = n1a + n2b + n3c  is called the lattice translation  

vector. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6 Two-dimensional representation of arrangement of atoms in polycrystalline 

material 

 

 

 
Grain boundaries 
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1.4.4 Terminology Related with Crystal Structure 
 

Unit cell: A unit cell is the smallest structure that will generate the entire crystal from simple 

translation in three directions. 

Primitive unit cell: If there is only one lattice point per unit cell, it is called a primitive unit 

cell. Fig. 1.7 shows unit cells and primitive unit cells. 

Co-ordination number: The number of nearest neighbors (number of nearest lattice points to 

any lattice point) in a crystal arrangement is called co-ordination number. 

 

 
 

 

Fig. 1.7 Two-dimensional crystal lattices 1, 2, 3 and 4 represent unit cells. 1, 2 and 3 are 

primitive unit cells and 4 is non-primitive unit cell 
 

Tetrahedral radius: The radius of atoms (in place of lattice points) constituting the crystal is 

called tetrahedral radius. 

Cubic lattice: If the unit cell of crystal lattice has the shape of cube, the resulting lattice is 

called cubic lattice. 

Lattice constant: In a cubic lattice the length of one side of the cube (a) is called lattice 

constant. 

Packing efficiency: It is the ratio of the actual volume occupied by atoms in a lattice to the total 

volume, expressed as a percentage. 

 

1.4.5 Important Cubic Crystal Structures 

 

Simple cubic: For a simple cubic structure, lattice points are located only at the corners of the 

unit cell. Its co-ordination number is 6 and nearest neighbor distance is a. The structure of a 

simple cubic crystal is shown in Fig. 1.8. 

      
Fig. 1.8 Unit cell of simple cubic crystal 
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Body Centered Cubic (BCC): In addition to those in simple cubic structure, a lattice point is 

located at the centre of the cube as shown in Fig. 1.9. Its co-ordination number is 8 and nearest 

neighbor distance is 
3

.
2

a  

 
Fig. 1.9 Structure of body centered cubic crystal 

 

Face Centered Cubic (FCC): In addition to those in simple cubic, lattice points are located at 

the centre of all the faces of the cube as shown in Fig. 1.10. Co-ordination number is 12 and 

nearest neighbor distance is
2

a
. 

 
Fig. 1.10 Structure of face centered cubic crystal 

 

Diamond lattice: Diamond lattice is formed by two inter penetrating FCCs, with the second 

FCC lattice displaced from the first by 
1 1 1

, ,
4 4 4

 
 
 

 as shown in Fig. 1.11. The coordination 

number is 4 and nearest neighbor distance is a. Silicon, germanium and carbon (diamond) have 

this crystal structure. 
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Fig. 1.11 Structure of diamond lattice; hatched-circles represent atoms of second FCC 

located inside first FCC 

 

Zinc blend lattice: In diamond lattice, if the lattice points in the two FCCs are atoms of 

different elements, it becomes a zinc blend lattice, e.g., GaAs, in which one FCC is formed by 

Ga and the other FCC by As atoms. The co-ordination number is 4 and the nearest neighbor 

distance is 3

4
.a  

Example 1.3 Determine the packing efficiency of simple cubic, body centered cubic, face 

centered cubic and diamond lattices. 

Solution 

a. Simple cubic 

  Tetrahedral radius r    =  
2

a
 

  Volume of sphere  =  
3

34

3 6

a
r


 =  

  Number of atoms per unit cell     =  
1

8 1
8

 =  

  Volume of unit cell  =  a3 

   Packing efficiency  =  
in

100
Volume of spheres one unit cell

Volume of unit cell
  

      =  

3

3

6 100 100 52%
6

a

a




 =  =  

b. BCC 

  Tetrahedral radius r   = 
3

4
a  
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  Volume or sphere   =  
2

3

3

4 3 3 3

3 4 16

a
a

 
=  

  Number of atoms per unit cell  = 
1

8 1 2
8

 + =  -x8+l=2 

  Packing efficiency   = 

3

3

2 3
16 100

a

a



   

      = 
3

100 68%
8


 =  

c. FCC 

  Tetrahedral radius r   =  
2 2

a
 

  Volume or sphere   =  
3

12 2

a
 

  Number of atoms per unit cell  = 
1 1

8 6 4
8 2

 +  =   

  Packing efficiency   = 

3

3

4
12 2

100

a

a




   

      = 72%
3 28


=  

d. Diamond lattice  

  Tetrahedral radius r   =  
3

8
a  

  Volume or sphere   =  
3

3

128
a


 

  Number of atoms per unit cell  = 
1 1

8 6 4 8
8 2

 +  + =   

  Packing efficiency   = 

3

3

8 3
128

100

a

a



   

      = 
3

34%
16


=  

1.4.6 Crystal Axes and Planes 

 

Cubic crystal directions are described in terms of Miller notation. Consider, for example, any 

plane in space which satisfies the equation 

    1
x y z

a b c
+ + =                           (1.31) 
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     Here, a, b and c are intercepts made by the plane at x, y and z axes respectively. Writing h, k 

and l as the reciprocals of these intercepts, the plane may be described by 

 

  hx + ky + lz = 1                                     (1.32) 

 

     The Miller indices for this plane is written as (hkl). Integer values are chosen for these 

indices as multiples of the edges of the unit cell. If an intercept is negative a bar is used for that 

Miller index. For example, (Ill) shows that the intercept on the x-axis is -1. 

     The configuration of atoms in many of the Miller planes in a cubic crystal are identical. 

Thus, the planes (001), (010), (100), (001), (010) and (100) are essentially similar in nature and 

they are denoted as {001} planes. Some of the principle crystal planes are shown in Fig. 1.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.12 Principal crystal planes 

 

     Indices of lattice plane direction (i.e., the line normal to the lattice plane) are simply the 

vector components of the direction resolved along the co-ordinate axes. Thus the (111) plane 

has a direction written as [111], and so on. This is an extremely convenient feature of the Miller 

index system for cubic crystals. The set of directions [001], [010], [100], [001], [010], [100] is 

written as < 001 >. Fig 1.13 show different crystal directions. 
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Fig. 1.13 Crystal directions 

 

The separation between two adjacent parallel planes {hkl} is given by  

 

   d = 
2 2 2

a

h k l+ +
      (1.33) 

   d = a for {100} planes 

   d = 0.707a for {110} planes 

   d = 0.577a for {111} planes 

{111} planes are the closest spaced among low index planes. 

 

1.5 ENERGY BANDS IN SOLIDS 

 

When atoms are brought together the application of Pauli's exclusion principle becomes 

important. When two atoms are completely isolated from each other so that there is no 

interaction of electron wave functions between them, they can have identical electronic 

structures. Electrons of isolated atoms occupy discrete energy levels as implied by Bohr 

postulates and Pauli's exclusion principle. As the spacing becomes smaller, electron wave 

functions begin to overlap. The Pauli's exclusion principle states that no two electrons in a given 

interacting system may have the same quantum state. Thus, there must be a splitting of the 

discrete energy levels of the isolated atoms into new levels belonging to the pair rather than to 

the individual atoms.  

     In a solid, many atoms are brought together, so that the split energy levels essentially form 

continuous bands of energies. Fig. 1.14 illustrates the imaginary formation of diamond crystal 

from isolated carbon atoms.  

     Each isolated carbon atom has an electronic structure 1s2 2s2 2p2 in the ground state. Each 

atom has available states of 2 in 1s, 2 in 2s and 6 in 2p. If we consider N atoms there will be 2 

N, 2 N and 6 N states of 1s, 2s and 2p respectively. 

     As the inter-atomic spacing reduces, these energy levels split into bands beginning with the 

outer shell. As the '2s' and '2p' bands grow, they merge into a single band composed of mixture 
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of energy levels of 2s and 2p. This is called hybridization of bands. This band of levels from 2s 

and 2p consists of 8 N states and 4 N electrons.  

 
Fig. 1.14 Formation of energy band in diamond crystal. Imaginary diagram with electron 

energy as a function of inter-atomic spacing 

 

    As the distance between atoms decreases further, this band again splits into two different 

bands separated by a gap as shown in Fig. 1.14. At equilibrium inter-atomic spacing of 

diamond, these bands are separated by an energy gap. The upper band, called the conduction 

band, contains 4N states as does the lower band, called the valence band. The energy gap 

between these two bands does not contain any available energy states for the electrons to 

occupy. Thus, this band is called forbidden band. 

     At absolute zero temperature, the electrons will occupy the lowest energy levels available to 

them. Therefore 1s band will consists of 2 N electrons, and the remaining 4 N electrons will 

occupy the valence band. Thus the valence band is completely filled and the conduction band is 

empty at 0 K.               

     For the electrons to experience acceleration in an applied electric field, they must be able to 

move into other energy states. This means that there must be empty states available for the 

electrons to move. In diamond structure at 0 K, the valence band is completely filled so that no 

charge transport within the valence band is possible as there is no empty state for the electrons 

to move. There is no electron in the conduction band and so there is no charge transport in the 

conduction band. Thus diamond is a perfect insulator at 0 K. 

     If energy equal to the band gap is given to an electron in the valence band, it gets excited to 

the conduction band. This creates a vacancy in the valence band. This vacancy in the valence 

band is called a hole. The electron in the conduction band is called a free electron, because there 

are plenty of states for the electrons to move. Thus an Electron Hole Pair (EHP) is generated. If 

the energy used for this type of generation is thermal energy, the generation process is called 

thermal generation. 

     At a given temperature the number of electrons and holes generated depends on the band 

gap. The lower the band gap, the more the EHPs generated at a given temperature. The electrons 

can easily move in the conduction band resulting in a current flow, if a field is applied. 

Carbon atoms 

 

6 electrons/atom 

N atoms  

6 N electrons  

6 levels  

2 N electrons  

2 states 

2 N electrons  
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Similarly, the holes or vacancies in valence band can also provide charge transport in the 

valence band. 

     Energy band diagram is a characteristic property of solids. It depends on the coupling of 

atoms in the solid. Fig. 1.15 represents a typical energy band diagram where EC represents the 

minimum energy in the conduction band and EV represents the maximum energy of electron in 

the valence band. 

 EC - EV = Eg is the band gap of the semiconductor. 

 EV + 
2

g
E

 represents the middle of the band gap. Ei is called intrinsic level, which is the 

Fermi level in an intrinsic semiconductor and is located at the middle of the band gap. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.15 Energy band diagram of intrinsic semiconductor 

 

     In the energy band diagram, usually x-axis represents distance (along the direction of carrier 

movement) and y-axis represents electron energy, i.e., electron energy increases upward and 

hole energy increases downward.  

     The upper end of conduction band and lower end of valence band are usually not shown in 

the energy band diagram, the conduction band minimum (EC) and valence band maximum (EV) 

are sufficient. The energy band diagram is useful as a tool for analysing devices. 

 

1.5.1 Energy Band Diagram of Insulator, Semiconductor and Metal 

 

An insulator has a large band gap, so that the thermally generated carriers are negligible at room 

temperatures as shown in Fig. 1.16. The band gap of insulators are usually greater than 4 eV. 

     The energy band structure of semiconductor is similar to that of diamond except for the 

difference in band gap (Fig. 1.16). The conductivity of semiconductor is also zero at 0 K. Its 

conductivity can be increased by thermal or optical generation of EHPs. At room temperature, 

semiconductors have higher conductivity than insulators, due to its smaller band gap. The band 

gap of a semiconductor is generally less than 4 eV. 
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Fig. 1.16 Energy band diagram of metal, semiconductor and insulator 

 

     In metals the bands either overlap or are only partially filled. Thus electrons and empty states 

are mixed in the bands, so that electrons can move freely under the influence of electric of field. 

 

Table 1.5 Band gaps of some insulators and semiconductors 

 

Material InSb InAs Ge Si InP GaAs GaP GaN ZnS Si3N4 Diamond SiO2 

Band gap 0.18 0.36 0.67 1.11 1.35 1.43 2.26 3.4 3.6 5.0 5.5 9.0 

 

1.5.2. Direct and Indirect Band Gap Semiconductors 

 

The variation of electron energy (E) as a function of wave vector (K) along the principal 

direction of crystal is shown in figure 1.17(a) and (b). If the K values are equal for an electron 

with minimum energy in the conduction band (electron at the bottom of the conduction band) 

and an electron with maximum energy in the valence band (electron at the top of the valence 

band) as in Fig. 1.17(a), the semiconductor is called direct band gap semiconductor. For direct 

band gap semiconductor, electrons in the conduction hand minimum and valence band 

maximum have the same momentum. Therefore an electron in the conduction band can directly 

recombine with a hole in the valence band, releasing the difference in energy (E  Eg = h) as a 
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photon. (Electrons in the conduction band usually occupy available states at bottom of 

conduction band, where the electron energy is  minimum and holes occupy available states at 

top of the valence band where hole energy is minimum.) Such materials are used for making 

LEDs. e.g., GaAs. 

 
Fig. 1.17 E- k plots (a) direct bandgap semiconductor (b) indirect bandgap semiconductor 

 

     In Fig. 1.17(b) the electron in conduction band minimum and valence band maximum have 

different values of k. Thus, the momentum values (P = hk) are different for electrons at 

conduction band minimum and valence band maximum. Therefore, an electron cannot 

recombine directly with a hole in the valence band by releasing a photon as the momentum 

cannot be conserved. The transition must follow conservation of energy and momentum. 

     The momentum of photon is negligibly small, and momentum of the system cannot be 

conserved by release of photon. In this case, electron first transfers to an intermediate level Er 

called recombination centre by release of phonon and from there to the valence band. 

Semiconductors with different k values for conduction band minimum and valence band 

maximum, shown in Fig. 1.17(b) are called indirect band gap semiconductors, e.g., Ge, Si, 

AlAs. In these semiconductors recombination process results in release of energy as heat. 

 

1.5.3 Effective Mass 

 

The electrons in a crystal are not completely free, but interact with the periodic potential of the 

lattice. Therefore, the "wave particle" motion is not same as that in free space. Thus while 

applying the usual equations of electrodynamics to charge carriers in solids we must use altered 

values of mass. 

 The electron momentum P is given by 

   P = mv = h k 

   E = 
21

2
mv  

       = 

2 2 2

2 2

P k

m m
=

h
 

     Electron energy is parabolic with wave vector k. The electron mass is inversely related to the 

curvature (second derivative) of the E - k relationship  
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2 2

2

d E

dk m
=

h
 

     Thus, the effective mass of an electron (mn
*) in a band with a given E - k relationship is 

given by 

   

2

*

2

2

n
m

d E

dk

=
h

                                    (1.34) 

      The energy of electron in the conduction band (En) and energy of hole in the valence band 

(Eh) are given by 

   En = EC + 

2

*
2

n

P

m
       (1.35) 

   Eh = EV +

2

*
2

p

P

m
       (1.35a) 

*

pm is the effective mass of hole. 

     Kinetic energy of electron at E = EC and hole at E = EV are zero.  

     The energy band diagram of GaAs is shown in Fig. 1.18. It has three conduction band 

minima L, and . The curvature 

2

2

d E

dk

 
 
 

 is maximum for r minimum. Therefore the effective 

mass of electron in the r band is much less than that in other two bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.18 Energy band diagram of GaAs 

 

     An electron at conduction band minimum has positive effective mass (positive curvature) 

and at valence band maximum has negative effective mass (negative curvature). Valence band 

electrons with negative charge and negative mass move in an electric field in the same direction 

as holes with positive charge and positive mass. Thus charge transport in valence band can be 

fully accounted by hole motion. 
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     The effective mass of electrons and holes in various semiconductors are listed in Table 1.6. 

   

Table 1.6 

 

 Ge Si GaAs 
*

nm  0.55mo 1.1mo 0.067mo 

*

pm  0.37mo 0.56mo 0.48mo 

Note: mo is the free space mass of electron. 

 

1.5.4 Conduction by Holes 

 

Consider a semiconductor specimen of volume V with N semiconductor atoms. There will be 

4N states in the valence band and 4N states in the conduction band. At 0 K all the states in the 

valence band are filled with electrons. For every electron (j) with velocity, vj, there is another 

electron (j') with opposite velocity (-vj) as shown in Fig. 1.19. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.19 Valence band of semiconductor with all states filled (electrons j and j' are shown) 

 

There fore, the current density due to holes is 

  
4

1

0
N

k

k

q
J

V


=

−
= = ,     for filled valence band    (1.36) 

where V is the volume of semiconductor specimen and v is the velocity of electron. 

If jth electron is removed from valence band 4N 

  
4

1

(0 )
N

k j j

k

q q
J

V V
  

=

− − 
= − = − 

 
       (1.37) 

i.e., removing an electron with velocity vj from the valence band produces a current density in 

the direction of velocity. This may be considered as hole current density, which is in the 

direction of movement of hole. 
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Fig. 1.20 Hole Movement in Valence Band 

 

     Consider a vacant state in the valence band or hole at A. When an electric field is applied in 

the positive x-direction as shown in Fig. 1.20, an electron at B moves into the vacant state at A. 

Now, the position of hole is transferred from A to B. i.e., hole moves in a direction opposite to 

the direction of movement of electron. This process continues and hole continues to move in the 

direction of electric field resulting in a current flow in the direction of hole movement. This 

current is called hole current since it is due to the presence of holes in the valence band and no 

free electrons are involved in this conduction process. 

 

1.6 INTRINSIC SEMICONDUCTOR 

 

A semiconductor crystal with no impurities or defects is called an intrinsic semiconductor. At 0 

K the conduction band is empty and valence band is completely filled as in Fig. 1.21(a). Thus, 

there are no mobile charge carriers at 0 K. Hence, the conductivity of an intrinsic semiconductor 

at absolute zero temperature is zero. But as temperature increases, electrons from the valence 

band are excited to the conduction band and the conductivity increases with temperature. The 

conductivity of intrinsic semiconductors decrease with increase in band gap, as more energy is 

required to excite electron from valence band to conduction band when the band gap is more. 

     If an electron in the valence band gets energy equal to band gap (Eg) it gets excited from 

valence band to conduction band. As a result a vacancy is created in the valence band (vacancy 

in the valence band is nothing but a hole) and an electron in the conduction band. i.e., an 

Electron-Hole Pair (EHP) is generated. Generation due to thermal excitation of electrons from 

valence band to conduction band is called intrinsic generation. 

 

           

           

        

 

 

 

 

 

 

 

 

 

Fig. 1.21 Energy band diagram of intrinsic semiconductor 

 

     Since electrons and holes are generated in pair, the concentration of electrons in the 

conduction band and holes in the valence band are equal as shown in Fig. 1.21(b). The 
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concentration of electrons or holes in the intrinsic semiconductor under thermal equilibrium           

(no, po) is referred to as intrinsic carrier concentration (ni). For an intrinsic semiconductor, 

     

     no = po = ni 

 

     Intrinsic carrier concentration is a function of temperature. As temperature increases thermal 

generation rate increases, resulting in the increase of intrinsic carrier concentration.  

     Recombination is the opposite process of generation. When an electron in the conduction 

band falls to a vacancy in the valence band, by releasing energy, an electron in the conduction 

band and a hole in the valence band vanish as shown by Fig. 1.22. This process is called 

recombination of EHP. 

 

 

 

 

 

 

 

Fig. 1.22 Recombination of electron hole pair 

 

    Under thermal equilibrium, the rate of generation and rate of recombination are equal in any 

semiconductor so that carrier concentrations remain steady. The thermal generation rate at 

temperature T is given by g(T) = r
2 .in  Recombination rate (r) is proportional to the product of 

electron and hole concentrations and is expressed as  

    

     r = rnp 

 

where  r   -   is a proportionality constant depending on the recombination mechanism 

 n    -    total electron concentration 

 p    -    total hole concentration 

 

At thermal equilibrium, n = no and p = po 

     r = rnopo 

 where no  -  electron concentration under thermal equilibrium 

  po  -  hole concentration under thermal equilibrium 

For intrinsic semiconductor no = po = ni 

     ri = r . 
2 ( )in g T=  

where g(T) represents the thermal generation rate. 

 

1.6.1 Valence Bond Model    

 

Each atom of semiconductor (Si) shares its four valence electrons with four other atoms, so that 

all atoms get a stable structure with 8 electrons in valence shell as shown in Fig. 1.23 All the 

electrons are tightly bound to the nucleus at 0 K. No free electron or hole exists at 0 K. If energy 

equal to binding energy is given, electrons come out of the bond, breaking the bonds. (This 

 

(a) Before 

 

(b) After 

EC EC 

EV EV 



 

 

 

 

 

 
30   Semiconductor Materials and Physics 

energy is equivalent to the energy band gap). Now, these electrons become part of the crystal as 

a whole and are called free electrons. The broken bond is called a hole. As temperature 

increases more and more electrons break the bonds resulting in generation of more EHPs. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.23 Valence bond model of intrinsic semiconductor 

 

1.7 EXTRINSIC SEMICONDUCTOR 

 

In a semiconductor, charge carriers may be purposely introduced by adding impurities to it. This 

process is called doping. Depending on the type of impurities, the doped semi conductor may be 

n-type or p-type. In a doped semiconductor, the electron concentration (no) and hole 

concentration (po) are different (no ≠ po ≠ ni). Such a semiconductor is called extrinsic 

semiconductor. When impurities are added to an otherwise pure semiconductor, additional 

energy levels are introduced in the band structure of the semiconductor. Usually, these energy 

levels lie within the band gap. 

 

1.7.1  n-type Semiconductors 

 

A semiconductor doped with a pentavalent impurity is called n-type semiconductor. Pentavalent 

impurity introduces energy level in the band gap, close to the conduction band edge as shown in 

Fig. 1.24. At 0 K these levels are completely occupied by electrons (5th electron of the 

pentavalent impurity at absolute zero temperature occupy this level). These levels donate free 

electrons to the semiconductor on increasing the temperature slightly. So, these levels are called 

donor levels. The energy difference between conduction band and donor level (EC - ED) is called 

ionization energy. (The ionization energy is defined as the energy required to ionize a donor or 

an acceptor atom).  

     The ionization energy is very small (of the order of meV), so that very small energy 

sufficient to excite electrons from donor level to conduction band. Therefore, at room 

temperature all the electrons in the donor level are excited to the conduction band. Each 

pentavalent impurity atom donates a free electron to the semiconductor. So, pentavalent 

impurities are also known as donor impurities. 
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Fig. 1.24 Energy band diagram of n-type semiconductor (a) at 0 K (b) at room 

temperature 

 

     Due to doping, electron concentration increases from intrinsic carrier concentration (ni) to a 

value approximately equal to the donor impurity concentration (doping concentration). Increase 

in electron concentration results in an increased recombination rate, [r    np], thus reducing 

electron and hole concentrations. Under thermal equilibrium, generation and recombination 

rates balances each other, resulting in a reduced concentration of holes compared to the intrinsic 

value. Thus in an n-type semiconductor no > ni and po < ni. Hence, electrons are referred to as 

majority carriers and holes as minority carriers in an n-type semiconductor.  

     The thermal generation rate in a semiconductor material at a given temperature is a constant, 

independent of doping. Therefore, for n-type semiconductor 

  thermal generation rate g(T)  =  2

r in  

             recombination rate  r   =  rnp 

             =  rnopo under thermal equilibrium. 

     The recombination rate balances with generation rate under thermal equilibrium. 

         r   = g(T) 

   i.e.,                rnopo   = 2

r in  

   or             nopo  = 2

in   

 

Table 1.7 Ionization Energies of Impurities in Silicon 

 

Element                          Type of level            lonization energy (eV) 

Boron Acceptor 0.045 

Aluminium.  Acceptor 0.057 

Gallium Acceptor 0.065 

Phosphorous Donor 0.044 

Arsenic Donor 0.049 

Antimony Donor 0.039 

 

Valence Bond Model 

 

When a pentavalent impurity is added to the silicon crystal, one of the silicon atoms is replaced, 

by an impurity atom as shown in Fig. 1.25. This introduces an excess of one electron after 

completing the bond. At 0 K this electron is bound to the impurity atom itself and is not free to 

move. So, the conductivity of n-type semiconductor is zero at 0 K. If thermal energy equal to 
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binding energy is supplied to this electron, the impurity atom gets ionized and electron becomes 

free (not bound to any of the atoms) to participate in the conduction process. 

 

 
Fig. 1.25 Valence Bond Model of n-Type Semiconductor 

 

1.7.2 p-type Semiconductor      

 

A semiconductor doped with trivalent impurities like Boron, Gallium etc., forms a p-type 

semiconductor. These impurities introduces energy levels in the band gap of silicon, germanium 

etc., near the valence band edge as shown in Fig. 1.26. These energy levels are vacant at 0 K. 

Thus, these levels can accept electrons from the valence band and are called acceptor levels 

(EA). 

     The energy difference between acceptor level and valence band edge (EA - Ev) is very small               

(~  meV). So, as the temperature increases slightly (~100-150 K), electrons excited from 

valence band to acceptor level creating holes in the valence band. The hole concentration 

increases to the acceptor doping concentration (NA). As the hole concentration increases, 

recombination rate increases. This results in the reduction of electron and hole concentrations. 

Under thermal equilibrium, generation rate ( 2

r in ) and recombination rate (rnopo) balances 

each other, so that po > ni and no < ni. Thus, holes are majority carriers and electrons are 

minority carriers in a p-type semiconductor. 

 

 
Fig. 1.26 Energy band diagram of p-type semiconductor (a) at 0 K (b) at room 

temperature 
 

     Generation process by thermal excitation of electrons from donor level to conduction band or 

valence band to acceptor level is called extrinsic generation. In extrinsic generation only 

majority carriers are generated. 

     There are impurities, which can act as donors as well as acceptors. For example, silicon in 

GaAs usually acts as a donor impurity when a silicon atom replaces a Ga atom. But, if there is 
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an excess of As vacancies during growth process, Si impurities may sit on As sites. In that case, 

silicon acts as an acceptor impurity. This type of impurity, which can serve as acceptor as well 

as donor is called amphoteric impurity. 
 

1.8 CARRIER CONCENTRATION 
 

     Free electrons and holes are the charge carriers in a semiconductor. To obtain expression for 

carrier concentration we must investigate the distribution of carriers over the available energy 

states. For this we can use Fermi-Dirac distribution function, as electrons in semiconductors 

obey Fermi-Dirac statistics. 

     The distribution of electrons over a range of allowed energy levels at thermal equilibrium is 

given by 

   f(E) = 
( )/

1

1 FE E kT
e

−
+

 

where, k is Boltzmann's constant = 8.62 × 10-5 eV/K = 1.38 × 10-23J/K 

 T is absolute temperature 

 EF is Fermi level 

 f(E) is Fermi-Dirac distribution function. 

f(E) represents the probability that an available energy state at E is occupied by an electron at 

absolute temperature T under thermal equilibrium. (Thermal equilibrium refers to a 

semiconductor specimen not acted upon by any external force. Under thermal equilibrium the 

only generation process is thermal generation. Thermal generation and recombination rates 

balance each other under equilibrium.) 

     Probability of occupancy of Fermi level in any material under thermal equilibrium is 1

2
, for r 

> 0. Thus, if an energy level is available at the Fermi level, its probability of occupancy will be 

half. The Fermi-Dirac distribution function f(E) has a rectangular  distribution at absolute zero 

temperature as shown in Fig. 1.27. 

 At T = 0K and  E < EF; f(E) = 
1 1

1
1 01 e−

= =
++

 

 At T = 0K  and  E > EF;   f(E) =
1 1

0
11 e

= =
+ +

 

     This implies that at 0 K all available energy states up to EF are filled with electrons and all 

the available states above EF are empty. At T > 0K some probability exists for states above EF to 

be filled and states below EF to be vacant. This is illustrated in Fig. 1.27. Fermi Dirac 

distribution function has a fixed shape with respect to the Fermi level at a given temperature. 

 
Fig. 1.27 Fermi-Dirac distribution function f(E) vs E for different temperatures 
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     While applying Fermi-Dirac distribution function to semiconductors it should be noted that 

f(E) is the probability of occupancy of an available energy state at E. Thus, if there is no 

available state at E (e.g., in the band gap of a semiconductor) there is no possibility of finding 

an electron at E. 

Example 1.4   Show that the probability of a state E above EF is filled equals probability that a 

state E below EF is empty. (i.e., f(E) vs. E diagram is antisymmetric about E = EF). 

Solution  

Probability that a state E above EF is filled 

  = f(EF + E) = 
( )/

1

1 F fFE E E kT
e

+ −
+

       

  = 
/

1

1 E kTe+
        (Ex.1.4a) 

 
Fig. Ex. 1.4 Fermi-Dirac Distribution Function 

 

Probability that a state E below EF is filled 

  = f(EF  - E) 

Probability that a state E below EF is vacant 

  = 1 - f(EF - E) 

  = 1 - 
( ) /

1

1 F FE E E kTe − −+
 

  
/

/ /

1
1

1 1

E kT

E kT E kT

e

e e

−

− −
= − =

+ +
 

Dividing numerator and denominator with /E kTe−  

 

  1 - f(EF  - E) = 
/

1

1 E kTe+
     (Ex.l.4b) 

 

     From equations (Ex.l.4a) and (Ex.l.4b), the probability of a state E above EF is filled equals 

the probability that a state E below EF is empty. Or the Fermi dirac distribution function is 

antisymmetric with respect to the Fermi level. 

Example 1.5.   Determine, a. the probability of occupancy of following energy levels at 0 K, 

300 K and 600 K;  

(i) 0.26 eV above EF 

(ii) 0.52 eV above EF 
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b. the probability of vacancy of the following levels at 0 K, 300 K and 600 K 

(i) 0.26 eV below EF 

(ii) 0.52 eV below EF 

 

Solution 

a. Probability of Occupancy 

 

at 0 K 

(i) f(EF + 0.26) = 0 

(ii) f(EF + 0.52) = 0 

at 300 K, kT = 0.026 eV 

(i) f(EF  + 0.26) = 
0.26

0.026

1

1 e+

 = 4.54 × 10-5 

(ii) f(EF + 0.52) = 
0.52

0.026

1

1 e+

= 2.061 × 10-9 

at 600 K, kT = 0.052 eV 

(i) f(EF  + 0.26) = 
0.26

0.052

1

1 e+

= 6.693 × 10-3 

(ii) f(EF + 0.52) = 
0.52

0.052

1

1 e+

= 4.54 × 10-5 

1 + e 0.052 

 

b. Probability of Vacancy 

 

at 0 K 

(i) 1 - f(EF  - 0.26) = 0 

(ii) 1 - f(EF - 0.52) = 0 

at 300 K 

(i) 1 - f(EF - 0.26) = 
0.26

0.026

1

1 e
−

+

 = 4.54 × 10-5 

(ii) 1 - f(EF - 0.52) = 
0.52

0.026

1

1 e
−

+

 = 2.061 × 10-9 

at 600 K 

(i)   1 - f(EF - 0.26) = 
0.52

0.026

1

1 e
−

+

= 6.693 × 10-3 

(ii)   1 - f(EF  - 0.52) = 
0.52

0.052

1

1 e
−

+

 = 4.54 × 10-5 

Remark: The symmetry of f(E) vs E plot with reference to EF can be observed in the above results. 
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1.8.1 Fermi-Dirac Distribution Function Applied to Semiconductors 

 

     Fig. 1.28 shows the energy band diagram of an intrinsic semiconductor along with f(E) with 

common energy axis. For intrinsic semiconductors, probability of occupancy in conduction 

band equals the probability of vacancy in valence band. i.e., 1 - f(EV) = f(EC). Because of the 

symmetry of f(E) vs E diagram, to satisfy the above condition EF must be at the middle of the 

band gap. i.e. the Fermi level in an intrinsic semiconductor is at the middle of the band gap and 

is called the intrinsic level. 

 

 
 

 

 

 

       

     For an n-type semiconductor probability of occupancy in the conduction band is much 

greater than the probability of vacancy in the valence band. i.e., f(EC) >> 1 - f(EV). To satisfy 

this condition EF must be above the middle of the band gap as shown in Fig. 1.29. As doping 

increases EF moves towards EC. 

     Similarly for a p-type semiconductor, probability of vacancy in valence band is much greater 

than probability of occupancy in the conduction band at room temperature. The shape of f(E) vs 

E diagram remains, unchanged for a given temperature. It changes only with change in 

temperature. Therefore, Fermi level must be closer to EV compared to EC as shown in Fig. 1.30. 

     In short, position of Fermi level is an indication of carrier concentrations in a semiconductor. 

Fig. 1.28 Relative plot of Fenni-Dirac  
distribution function and energy 
band diagram of intrinsic semiconductor 
 

Fig. 1.29 Energy band diagram 

along with f(E) for n-type 

semiconductor 
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Fig. 1.30 Energy band diagram along with f(E) for p-type semiconductor 

 

Table 1.8 
 

Type of semiconductor Position of Fermi level 

1. Intrinsic semiconductor At the middle of the band gap (Ei)   

2. n-type semiconductor Above Ei  

EF moves up towards EC with increase 

in electron concentration. 

3. p-type semiconductor Below Ei  

EF moves down towards with increase 

in hole concentration. 
 

1.8.2. Electron and Hole Concentration at Equilibrium 
 

The Fermi-Dirac distribution function can be used to evaluate electron and hole concentrations 

in a semiconductor. The concentration of electrons in the conduction band is given by 

 

   no = ( ) ( )

CE

f E N E dE



       (1.38) 

 

where N(E)dE represents the density of states in the energy range dE. The number of electrons 

per unit volume in the energy range dE is the product of density of states N(E)dE and 

probability of occupancy f(E). Thus, the total electron concentration in the conduction band (no) 

is the integral of product of density of states and probability of occupancy over the entire 

conduction band as given by equation (1.38).  

    N(E) can be evaluated using quantum mechanics and Pauli's exclusion principle. It can be 

shown that N(E)  
1
2E  i.e., density of states in conduction band increases with increase in 
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electron energy. But f(E) decreases exponentially with increase in energy and becomes 

extremely small at large energies, i.e., f(E)N(E) decrease rapidly above EC and very few 

electrons occupy far above EC. Therefore, most of the electrons occupy the lowest available 

energy levels in the conduction band. 1 - f(EV) is the probability of vacancy (probability of 

ccupancy of hole) at EV . 1 - f(E) decrease rapidly below EV i.e., holes occupy top most 

available states in the valence band. 

 

   [1 ( )] ( )

V

o

E

p f E N E dE



= −      (1.39) 

 

Fig.1.31 makes a graphical estimate of carrier concentrations in intrinsic semiconductor. 

 

 
 

Fig. 1.31 Graphical evaluation of carrier concentrations (intrinsic semiconductor) 

(a) Energy band diagram (b) Variation of density of states with energy (c) Fermi-Dirac 

distribution function (d) Carrier concentrations 

 

   Area under f(E) N(E) in the conduction band is a measure of electron concentration. Similarly, 

area under N(E)[l - f(E)] in the valence band is a measure of hole concentration a the valence 

band. For intrinsic semiconductor, these quantities are equal as is evident from Fig. 1.31. 

     For n-type semiconductor, N(E) f(E) in the conduction band has a larger area than NV[1-f(E)] 

in the valence band i.e., n0 >> p0 (Fig. 1.33). Similarly, for a p-type semiconductor N(E)f(E) in 

the conduction band is much less than N(E)[1 - f(E)] in the valence  band. s0 p0 >> n0.                  

(Fig. 1.32) 
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Fig. 1.32 Graphical evaluation of carrier concentrations in a p-type semiconductor 

 

 
Fig. 1.33 Graphical evaluation of carrier concentration in a n-type semiconductor 

      

     The electron concentration in the conduction band can be obtained by representing the 

distributed electron states in the conduction band by an effective density of states (NC) located 

at the conduction band edge EC. The effective density of states in the conduction band (NC) is 

given by 
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3

*
2

2

2
2 n

C

m kT
N

h


=

 
 
 

         (1.40) 

In terms of effective density of states (NC), the electron concentration in the conduction band is 

given as 

 

       n0 = NC f(EC)                               (1.41) 

 

i.e., the electron concentration in the conduction band equals the product of effective density of 

states at EC. and the probability of occupancy at EC. 

 

   f(EC) =  
( )/

1

1 C FE E kT
e

−
+

      (1.42) 

 

if EC - EF >> kT, i.e., if electron concentration is not very high, the above equation reduces to  

 

   f(EC) =  
( )/

( )/

1
C F

C F

E E kT

E E kT
e

e

− −

−
=      (1.43) 

 

i.e., for lightly doped semiconductor, Fermi-Dirac distribution function decays to Maxwell-

Boltzmann distribution function 

 

                n0 = NCf(EC) = 
( )/C FE E kT

CN e
− −

         (1.44) 

 

Similarly, the concentration of holes in the valence band is given by  

 

       p0 = NV[1 - f (EV)]       (1.45) 

          where         NV  =  2  

3
* 2

2

2 pm kT

h

 
  
 

       (1.46) 

is the effective density of states in the valence band. 

     1 - f(EV) is the probability of vacancy in the valence band. 

   1 - f (EV) =  
( )/

1
1

1 V FE E kT
e

−
−

+
      

       =  
( )/

( )/
1

V F

V F

E E kT

E E kT

e

e

−

−
+

      

if EF - EV >> kT, i.e., if hole concentration is not very high 

 

  l - f(EV) = ( )/V FE E kT
e

−   = ( )/F VE E kT
e

− −      (1.47) 

 

Substituting equation (1.47) in equation (1.45) 

 

  p0 = NV
( )/F VE E kT

e
− −                   (1.48) 
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For intrinsic semiconductor, equations (1.44) and (1.48) can be modified to 

  n0 =ni = NC
( )/C iE E kT

e
− −   ( EF = Ei)                (1.49) 

  p0 =ni = NV
( )/i VE E kT

e
− −                      (1.50) 

where Ei represent the Fermi level in intrinsic semiconductor. 

  by equations (1.49) and (1.50) for intrinsic semiconductor, at temperature T,  

  n0p0 = 
2

in =  NCNV
( )/C VE E kT

e
− −   

     =  NCNV
/gE kT

e
−

       (1.51) 

 

From equations (1.44) and (1.48), for a semiconductor with any temperature T, 

          n0p0 =  NCNV
( )/C VE E kT

e
− −   

     =  NCNV
/gE kT

e
−

       (1.52) 

 

     From equations (1.51) and (1.52), n0p0 = 
2

in for any semiconductor under thermal 

equilibrium. This relation is called mass action law. 

     Mass action law states that at a given temperature, the product of equilibrium electron and 

hole concentrations in a semiconductor is a constant for any doping and is equal to the square of 

the intrinsic carrier concentration at that temperature. 

     Substituting value of NC in terms of ni, from equations (1.50) in (1.45), we get  
 

  n0 =  ni
/F iE E kT

e
−           (1.53) 

 

and substituting value of NV in terms of n, from equation (1.50) in equation (1.48), we get 
 

  p0 =  ni
/i FE E kT

e
−           (1.54) 

 

     Equations (1.53) and (1.54) relate Fermi level position and carrier concentrations in a 

semiconductor. These equations are valid for semiconductors with low doping (EC -EF >> kT 

and EF - EV >> kT). Under low doping, Fermi-Dirac statistics may be replaced by Maxwell-

Boltzmann statistics. Physically, this means that under low doping number of mobile charge 

carriers in the bands are so small that only a small fraction of available states are occupied. This 

is known as diluteness condition, because the electrons (solute) form a dilute solution in the 

available energy states (solvent). A dilute electron gas is said to be non-degenerate, and the 

resulting semiconductor is called non-degenerate semiconductor. 

 

1.8.3 Temperature Dependence of Intrinsic Carrier Concentration 

 

By equation (1.51) intrinsic carrier concentration (ni) is 

   ni(T) = 
/ 2gE kT

C VN N e
−

      (1.55) 

Substituting values for NC and NV, 

   ni(T) = 

3

2

2

2
2

kT

h

 
 
 

( )
3

/2* * 4 gE kT

n pm m e
−

    (1.56) 

                        = 
3

/22
1

gE kT
K T e

−
|                                      (1.57) 
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     In silicon and germanium, the band gap decreases monotonically with increases in 

temperature and can be expressed as  

 

  Eg(T) = 
0 1gE bT−                                       (1.58) 

 

where,   
0gE is the interpolated value of band gap at 0 K 

  b1   is the rate of decrease of band gap with increase in temperature. 

Using equation (1.58), ni(T) becomes 

   ni(T)  = 0

3
/2

2
2

gE kT
K T e

−
      (1.59) 

 where  K2 = 1 / 2

1

b kK e                          (1.60) 

  i.e.,  ni  

3

2T  and ni  0
/ 2gE kT

e
−

 

     The exponential dependence is stronger than the other one and the intrinsic carrier 

concentration increases exponentially with increase in temperature. 

 

 
1.34 Approximate plot of variation of intrinsic carrier concentration with temperature for 

GaAs, Si and Ge 

     An approximate plot of intrinsic carrier concentration, as a function of temperature, is given 

in Fig. 1.34 for GaAs, Si and Ge. It can be shown that the intrinsic carrier concentration is 

minimum for GaAs and maximum for Ge at a given temperature. This is because of the wider 

band gap of GaAs and lower band gap of Ge. 

     Following empirical relationships are valid for temperature above 50 K. 

 

   ni(T) = 1.76  l016 

3 4550

32 TT e cm
−

−
 for Ge   (1.61) 

   ni(T) = 3.88  l016 

3 7000

32 TT e cm
−

−
 for Si   (1.62) 

 

[Note: Conductivity of intrinsic semiconductor also varies with temperature in a similar 

manner.] 
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1.8.4 Temperature Dependence of Majority Carrier Concentration in Extrinsic Semiconductor 

 

Consider an n-type semiconductor with doping concentration ND = 1015 cm-3. At 0 K, the carrier 

concentrations are zero as there is no band to band generation or extrinsic generation. 
 

 
Fig. 1.35 Variation of majority carrier concentration in a doped semiconductor (n-type  

semiconductor with ND = 1015 cm-3) 

 

     As temperature increases, electrons in the donor level get excited to the conduction band 

(extrinsic generation). For this process small energy is sufficient. As a result the free electron 

concentration increases with increase in temperature at lower range of temperature. The electron 

concentration in this region is given by n0 = ni + 
DN +  ND; i.e., electron concentration equals 

ionized donor concentration, as the intrinsic carrier concentration (ni) is negligible at these 

temperatures. 

     At temperature of around 150 K all the impurities are ionized, so that the electron 

concentration in the conduction band become equal to the donor concentration (n0(T) = ni(T) + 

DN +  ND; point A in Fig. 1.35) as intrinsic carrier concentration at this temperature is negligibly 

small (ni(T) << ND). 

     As temperature increases further, the electron concentration remains almost unchanged at 

ND, until the band to band generation (ni,(T)) become comparable to the impurity ionisation 

( )DN . 

     At a particular temperature the band to band generation [ni,(T)] become comparable to the 

impurity ionisation (point B in Fig. 1.35). 

 

   n0(T) = ni(T) + ND 

 

     After this temperature, majority carrier concentration increases with increase in temperature. 

In this region, as band to band generation exceeds impurity ionisation, minority carrier 

concentration has a value comparable to majority carrier concentration (no = ni + ND  ni) and po 

 ni . The temperature dependence of no is shown in Fig. 1.35. It consists of three regions: 

1. Ionization region: In this region the majority carrier concentration increases with 

increase in temperature due to ionisation of impurities. 

2. Extrinsic region: In this region majority carrier concentration remains constant and 

minority carrier concentration is negligible. The majority carrier concentration and the 
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conductivity of the semiconductor is almost' independent of temperature in this legion. 

A device can be operated satisfactorily, only in this range of temperature. This shows 

that the doping process makes the conductivity of a semiconductor almost independent 

of temperature, over a wide range of temperature. The wider the band gap (or lower ni) 

of a semiconductor, the higher will be the extrinsic limit of temperature. For extrinsic 

behaviour, majority carrier concentration must be atleast 5 ni. 

3. Intrinsic region: At higher values of temperature the intrinsic carrier concentration 

become comparable to or greater than the doping concentration. Therefore, in this 

region, majority as well as minority carrier concentration increases with increase in 

temperature and the semiconductor behaves like an intrinsic semiconductor. 

Example 1.6 A semiconductor device requires n-type material. It is to be operated at 455 K. 

Silicon doped with 5  1015 As atoms/cm3 and Ge doped with 5  1015 Sb atoms/cm3 are 

available. Which one of these materials can be used for fabricating the device?  

 

Solution  

For extrinsic behaviour n0 > 5ni 

  At 455 K, ni for Si   ni  = 3.88  l016
3

2T . e-7000/T 

          = 7.84  1013 cm-3 

                 5ni = 3.92  1014 cm-3 

      no > 5ni  

     Therefore, silicon doped with 5  1015 Arsenic atoms/cm3 can be used for fabricating the 

device. 

  At 455 K, ni for Ge          ni = 1.76  1016 
3

2T . e-4500/T 

                                              = 7.755  1015 cm-3 

                                               5ni  = 3.878  1016 cm-3 

                  n0   5ni    

     Therefore, Germanium doped with 5  1015 Antimony atoms/cm3 cannot be used as n-type 

material at 455 K. 

 

1.8.5 Equilibrium Electron Hole Concentrations and Charge Neutrality 

 

Consider a homogeneous non-degenerate semiconductor with uniform doping of ND donors/cm3 

and NA acceptors/cm3. Under thermal equilibrium the semiconductor as a whole remains 

neutral, i.e., total positive charge = total negative charge. 

   po+ DN +  = n0 + AN −                            (1.63a) 

or   no- po  = DN +  - 
AN −                            (1.63b) 

where    
DN +    represents ionized donor concentration. 

 AN −   represents ionized acceptor concentration. 

     Equation (1.63) is called charge neutrality equation. Above 150 K almost all the impurities 

get ionized in a non-degenerate semiconductor, so that  

  
DN +  = ND and 

AN − = NA 

Therefore, equation (1.63b) becomes 

  no- po  = ND - NA                             (1.64) 
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We also have the equation, 

 

  nopo  = 2

1n         (1.65) 

 

     Equations (1.64) and (1.65) can be solved to get carrier concentrations (no and po) in a 

semiconductor under thermal equilibrium. 

     If a semiconductor is doped with both donors and acceptors, the net doping is equal to the 

difference between the two. i.e., if NA > ND, the resulting semiconductor is n-type and if NA > 

ND, the resulting semiconductor is p-type. 

     If net doping is much greater than ni, the majority carrier concentration equals net doping. If 

net doping is comparable to ni, solve equations (1.64) and (1.65) for majority carrier 

concentrations. In both cases, the minority carrier concentration is evaluated from the 

expression nopo = 2

in   Examples 1.7 to 1.9 illustrate the procedure of determining carrier 

concentrations. 

 

Example 1.7 A silicon sample is doped with 5  1016 As atoms/cm3 and 2  1016 B atoms/cm3. 

Determine a. electron and hole concentrations at room temperature b. the position of Fermi 

level. Assume n. for silicon at room temperature as 1.5  1010 cm-3. 

 

(a)  ND   = 5 × l016cm-3, NA = 2 × 1016 cm-3 

 Net doping  = ND - NA 

         = 5 × 1016 - 2 × 1016 

         = 3 × 1016 cm-3 

ND > NA  Semiconductor is n-type 

Net doping ND - NA >> ni. 

Therefore, majority carrier concentration   net doping 

  i.e.,    no = ND - NA = 3 × 1016 cm-3 

   po = 
2 20

16

0

2.25 10

3 10

in

n


=


  

       = 7.5 × 103 cm-3 

 

   _______________EC 

   _______________EF 

   _______________Ei 

   _______________EV 

     Fig. Ex.1.7 

 (b)                 no = ni
/F iE E kT

e
−

 

                    
( )/0 F iE E kT

i

n
e

n

−
=  

   0( )
lnF i

i

E E n

kT n

−
=  

0.377eV 
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 Taking natural logarithm, 

             EF - Ei   = kTln 0

i

n

n
  

        kT  = 26 meV at room temperature      

          EF - Ei    = 
16

10

3 10
0.026 ln

1.5 10





 

                =  0.377 eV. 

 

The Fermi level position is shown in Fig. Ex.1.7. 

 

Example 1.8   A Ge sample is doped with 1017 Boron atoms per cm3. Determine the carrier 

concentrations and Fermi level position at room temperature. ni for Ge = 2.5 × 1013 cm-3  at 

room temperature. 

 

Solution  

   NA = 1017 cm-3 

   ni   = 2.5 × 1013 cm-3, NA >> ni 

Therefore, majority carrier concentration = doping concentration. 

  i.e.,  p0 =  NA = 1017 cm-3 and 

   no = 
2

0

in

p
  

       
13 2

17

(2.5 10 )

10


=  = 6.25 × 109 cm-3 

   p0 = ni
/F iE E kT

e
−

 

           
0lni F

i

p
E E kT

n
− =  

      =
17

13

10
0.026 ln

2.5 10



 

        =  0.2156 eV. 

 

Example 1.9   A Ge sample is doped with 5 x 1013 Arsenic atoms/cm3. Determine, the carrier 

concentration and Fermi level position at 300 K. (ni for Ge at 300 K = 2.5 × 1013 cm-3). 

 

Solution 

   ND = 5 × 1013 cm-3 

   ND   ni 

     In this case, doping concentration is comparable to intrinsic carrier concentration. Therefore, 

it is required to solve the charge neutrality equation to find out majority carrier concentration. 

  

         ND + p0 = n0 

           
2

0

0

i

D

n
N n

n
+ =  

  2 2

0 0 0D in n N n− − =  
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2 2

0

4

2

D D iN N n
n

 +
=  

                  
13 13 2 13 25 10 (5 10 ) 4 (2.5 10 )

2

   +  
=  

                  
13 135 10 7.07 10

2

  
=  

                  = 6.035 × 1013 cm-3 

(Negative answer is invalid) 

 

  p0 = 
2

0

in

n
  

     
13 2

13

(2.5 10 )

6.035 10


=


 

     = 1.035× 1013 cm-3 

 

To find Fermi level position 

 

  n0 = ni
/F iE E kT

e
−

 

          
0lnF i

i

n
E E kT

n
− =  

         =
13

13

6.035 10
0.026ln

2.5 10




 

       = 0.023 eV. 

1.9  CARRIER TRANSPORT IN SEMICONDUCTORS-MOBILITY AND  

       CONDUCTIVITY 

Carrier transport in semiconductors is mainly by two different mechanisms; drift and diffusion. 

Drift current results from the movement of electrons (holes) under an electric field similar to the 

current flow in a metal. Diffusive motion is due to gradients in carrier concentrations. 

 

Drift carriers in an electric field: The charge carriers in a solid are in random thermal motion 

under thermal equilibrium. (The mean thermal velocity of electron is given by *

3

n

kT
th m

v = . For 

silicon at 300 K, vth = 2.3 × 107 cm/s). 

     At room temperature the thermal motion of an electron may be visualised as random 

scattering from lattice atoms, impurities, other electrons, defects etc. Since the scattering is 

random, there is no net motion along any direction for a group of n electrons/cm3 in a given 

time. This is not true for an individual electron as shown in Fig. 1.36.  

     If an electric field is applied in the x-direction (x), each electron experiences a force -qx 

from the field. Thus, the group of electrons will have a net average velocity in the x-direction. 

This mean velocity is called drift velocity. If P is the total momentum of the group of n 

electrons/cm3 the accelerating force due to electric field is 

  x
x

field

dP
nq

dt
= − E         (1.66) 
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     Even though this equation shows a continuous acceleration in the x-direction, this force due 

to electric field is balanced by the decelerating force due to the collision process, under steady 

state condition. 

 
Fig. 1.36 Thermal motion of electron in solid 

 

     To evaluate the change in momentum due to collisions, we must investigate the collision 

probabilities, which will be constant if the collision is purely random.  

     Let us consider a group of N0 electrons at time t = 0. Let N(t) be the number of electrons 

unscattered (have not undergone collision) by time t. The rate of decrease N(t) at any time t is 

proportional to N(t). 

  
( )dN t

dt

−
  N(t)   

or  
( ) ( )dN t N t

dt t

−
=         (1.67) 

      

     Solution to this equation is 

 

     N(t) = /

0

t tN e−         (1.68) 

 

t is the mean time between collisions or mean free time. 

     The probability of collision for an electron in any time interval dt is dt / t . Therefore, the 

differential change in momentum due to collisions is  

        -dPx = Px. 
dt

t
 

or  x

collision

dP

dt
= xP

t

−
        (1.69) 

     At steady-state, sum of accelerating and decelerating effects must be zero. i.e., from 

equations (1.66) and (1.69), 

 

  xP

t

−
-nqx = 0        (1.70a) 

  <Px> = xP

n
= -q t x        (1.70b) 
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     This indicates that the electrons have constant average velocity in the negative x- direction 

given by 

  <vx> = 
* *

x x

n n

P qt

m m

  −
=

E
       (1.71) 

     This represents the net drift velocity of an average electron in response to the electric field. 

Usually, this velocity is much less than mean thermal velocity (vth). 

     The current density due to electron drift is the number of electrons crossing unit area per unit 

time (n<vx>) multiplied by the charge of an electron (q), which can be verified dimensionally as 

 

  Jn drift  =  -q(C) n (cm-3)vx (cm s-1) 

   =  -qn(vx)C/s cm2 = -qn(vx)A/cm2 

  Jn drift   =   -qn <vx> 

   = 
2

* x

n

nq t

m
E , substituting for <vx> from 1.71         (1.72) 

By Ohm's law, 

  Jn drift  =    nx 

  n = 
2

*

n

nq t

m
 by equation (1.72)                    (1.73) 

The conductivity (n), can be written as 

                 n = qnn, where n = 
*

n

qt

m
      (1.74) 

n is called electron mobility, which represents the ease with which an electron drift in a 

material. 

     Mobility can also be defined as the average drift velocity per unit electric field. 

   n = x

x

v−  

E
cm2 /Vs                          (1.75a) 

     The current density in terms of mobility is 

          Jn drift  = qnnx 

Similarly                   p       =  x

x

v+  

E
                                  (1.75b) 

Total drift current is 

        Jdrift      =   Jn drift + Jp drift 

                    = q(nn + pp) x = x      (1.76) 

 where         n + p = qnn + qpp       (1.77) 

     Equation (1.74) shows that lesser the effective mass higher the mobility, i.e., lighter particles 

are more mobile than heavier particles. It can also be shown that as the curvature of the band 

increases mobility increases. 

    Generally the mobility of electrons is found to be higher than that of holes in all 

semiconductors. This is due to the fact that the position of holes is close to the nucleus than that 

of electrons. (Valence band where holes occupy is close to the nucleus than conduction band 

where electrons occupy). The nuclear interaction is more on holes. 

 

Derivation of Conductivity of Semiconductor 
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By Ohms law, the electron drift current density may be expressed as 

   Jn = n          (1.78) 

where 

n is the conductivity due to electrons and 

 is the electric field. 

     By definition of current density, 

   Jn = -nqvn                                 (1.79) 

where 

n is the electron concentration 

q is the charge of electron = 1.6 10-19C 

vn is the drift velocity of electron. 

     The mobility of electrons is defined as 

   n  = nv−

E
       (1.80) 

Substitute equation (1.80) in (1.79), we get      

  

   Jn  = qnn        (1.81) 

From equations (1.78) and (1.81) we get 

   n = qnn 

Similarly 

   p = qpp 

            = n + p  

       = q[nn + pp] 

 

1.9.1 Compensation 

 

The process of adding opposite type of impurity to an already doped semiconductor is called 

compensation. In a semiconductor if equal amount of opposite type of impurities are added the 

resulting material become intrinsic. Such a material is called completely compensated 

semiconductor. By adding opposite type of impurities an n-type semiconductor can be 

converted to p-type semiconductor and vice versa. The carrier mobilities and conductivity of a 

compensated semiconductor are different from those of an uncompensated semiconductor with 

equal carrier concentrations. 

 

Example 1.10   The Fermi level position in a silicon sample at 300 K is 0.29 eV below EC. 

Determine the carrier concentrations and conductivity of the specimen. Given that ni = 1.5  

1010 cm-3, n = 1350 cm2/Vs, p = 480 cm2/Vs. 
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Solution 

  ____________________________ 

  ____________________________ 

  ____________________________ 

 

  ____________________________ 

   Fig. Ex.1.10 

For silicon Eg = 1.1 eV  

  EF - Ei = ( )
2

g

C F

E
E E− −  

    = 0.55 - 0.29  

    = 0.26 eV 

 

The specimen is n-type as the Fermi level is above Ei. 

 

          n0 = 
( )/F iE E kT

in e
−

 

              = 1.5  1010 

0.26

0.026e  

              = 3.30  1014 cm-3 

              = p0 =

2

0

in

n
 

              = 
210

14

(1.5 )10

3.30 10


=


6.8  105 cm-3 

Conductivity 

           = q(n0 n + pop) 

           = 1.6  10-19 (3.3  1014   1350 + 6.8  105  480) 

             = 0.071 ( cm)-1. 

 

Example 1.11   Show that the conductivity of a silicon sample under thermal equilibrium is 

minimum when it is slightly p-type. Derive expression for minimum conductivity. 

 

Solution 

        = q(n0 n + pop)       Ex.1.11 

          = 
2

0

0

i
n p

n
q n

n
 

 
+ 

 
 

For minimum conductivity, 

 

2

2

0 0

0; 0
d d

dn dn

 
=   

0.29 eV 

0.26 eV 

0.55 eV 

Eg/2 =0.55 eV 

EC 

 

EF 
 

Ei 
 

 
EV 
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2

2

0 0

0
i p

n

nd
q

dn n


= − =

 
 
 

 

 
2 2

0 n i pn n =  

       n0 = ( )
p

i i n p

n

n n


 


 Q      Ex.1.11(2) 

      Also  

22

2 3

0 0

2
0

i pqnd

dn n


=   

Similarly, for minimum conductivity 

 0

0

0

0; ( )n

i i n p

p

d
p n n

dp

 
 


= =  Q     Ex.1.11(3) 

When conductivity is minimum, n0 < ni and p0 > ni which implies that silicon sample is p-type 

when conductivity is minimum. Substituting n0 and p0 from equation (Ex. 1.11(2)) and (Ex. 

1.11(3)) into equation (Ex. 1.11(1)) gives the expression for minimum conductivity (min) as 

  min = qni
p n

n i p

n p

qn
 

 
 

+  

         2 i n pqn  =  

Example 1.12   Estimate the ratio of minimum conductivity to intrinsic conductivity of silicon 

at 300K.  

Solution 

  n    =  1350 cm2/Vs,  p = 480 cm2 / Vs 

  min =  2qni n p   

         =  2  1.6  10-19  1.5  1010  1350 480  

         = 3.86  l0-6 ( cm)-1 

    i  =  qni ( )n p +  

         = 1.6  10-19  1.5  l010 (1350 + 480) 

         = 4.39  10-6 ( cm)-1  

                
6

min

6

3.86 10
0.88

4.39 10i





−

−


= =


. 

 

1.9.2 Thermal relaxation time 
 

When an electric field is applied to a semiconductor, the charge carriers will acquire a net mean 

velocity whose direction depends on the type of carriers and direction of electric field. If the 

electric field is removed it will take some time for the electrons to acquire thermal equilibrium 

condition under which the mean velocity is zero. The time required to attain equilibrium after 

the removal of electric field is called thermal relaxation time ( t ). The velocity decays 

exponentially with time on removal of electric field as follows. 

 

  v(t) = v0e-t/ t         (1.82) 
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     Thermal relaxation time is also equal to the time taken by the charge carriers to attain steady-

state after applying electric field. 

 

Example 1.13   Determine, the mean free time for electron and hole in intrinsic silicon. 

 m0 = 9.11  10-28 g,     q = 1.6  10-19 C  

 n  = 1350cm2/Vs,    p = 480 cm2/Vs 

 *

nm = 0.26 m0,         
*

pm  = 0.38 m0 

   
*

n n
n

m
t

q


=  

      
28

19

0.26 9.11 10 1350
1.99

1.6 10
s

−

−

  
= =


 

   
*

n p

p

m
t

q


=  

        
28

19

0.38 9.11 10 480
1.038

1.6 10
s

−

−

  
= =


 

 

1.9.3 Scattering Mechanisms 

 

The different scattering mechanisms limit the mobility of charge carriers in a semiconductor. 

The important scattering mechanisms are 

1. Lattice scattering 

2. Ionized impurity scattering 

3. Neutral impurity scattering and 

4. Carrier carrier scattering 

Lattice scattering: This is the scattering mechanism due to vibration of lattice. As temperature 

increases the lattice vibrates at a faster rate (with increased energy). Therefore, scattering of 

carriers with lattice vibration increases with increase in temperature. Mobility decreases with 

rise in temperature such that 
L 

3

2 .T
−

 

Ionized impurity scattering: Ionized impurity scattering is the scattering of charge carriers 

with ionized impurities. Usually ionized impurities are dopants in a semiconductor. This is a 

dominant mode of scattering in doped semiconductors. This type of scattering increases with 

increase in doping and decrease in temperature. Mobility due to this type of scattering (
I ) is 

proportional to 
3

2 .T  

Neutral impurity scattering: The size of a neutral impurity atom is different from that of a 

host lattice atom and this difference cause strain in the lattice. This strain produces a bump in 

the potential near the neutral impurity atom, and the electric field produces scatters a carrier 

close enough to this impurity. This is negligible because the number of neutral impurities is very 

small. 

Carrier carrier scattering: In semiconductors holes and electrons may deflect each other 

during their movement through the crystal. This scattering is negligible in extrinsic 

semiconductor because the minority carriers are in short supply. Collision between same type of 

carriers is unimportant because there is only an exchange of momentum for carrier moving in 

the same direction. 
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1.9.4 Variation of Mobility with Temperature 

 

Mobility of charge carriers is decided by the scattering or collision mechanisms. As the 

scattering increases, mobility decreases. Lattice scattering increases with increase in 

temperature as the thermal agitation of lattice increases. Therefore, mobility due to lattice 

scattering decreases with increase in temperature ( )3

2
.L T  −  

     At lower temperature, the thermal motion of carriers is slower. Slowly moving carrier is 

scattered more strongly by interaction with a charged ion, compared to carriers with greater 

momentum. Therefore, mobility due to ionized impurity scattering decreases with decrease in 

temperature ( )3

2
.L T   

     The variation of mobility with temperature is shown in Fig. 1.37. The effective mobility due 

to different scattering mechanisms is given by 

 
 

Fig. 1.37 Variation of mobility with temperature 

     
1 1 1

...
I L  

= + +      (1.83) 

where   is the effective mobility. 

 I is mobility due to ionized impurity scattering. 

 L is mobility due to lattice scattering. 

 Therefore, mechanism with lowest mobility will dominate at a given temperature. 

 

1.9.5 Variation of Mobility with Doping 

 

As the concentration of impurities increases (increase in doping), due to increased ionized 

impurity scattering, mobility decreases. An approximate plot of mobility as a function of doping 

on log scale is given in Fig. 1.38. 

 

 

       µIT3/2                                 µLT-3/2 
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Fig. 1.38 Variation of Mobility with Doping 

 

Doping dependant mobilities in Si at 300 K is given by emperical formulae 

  n = 88 + 2

17

1252
/

1 0.698 10
cm Vs

N−+ 
 

  p = 54.3 + 2

17

407
/

1 0.374 10
cm Vs

N−+ 
 

where N represents doping concentration in cm-3. 

 

1.10 CONSTANCY Of FCRMI LEVEL AT EQUILIBRIUM 

 

Assume that a contact be made between two materials as shown in Fig. 1.39. 

 

 

 

 

 

 

 

 

Fig. 1.39 Two materials in contact at equilibrium 

  

     Consider a small energy interval E around an absolute value of energy E that is identical in 

the two materials. Assume that both materials have partially filled states around E. Therefore, 

electrons are able to move from material 1 to 2 without expenditure of any energy. 

     Number of electrons moving from material 1 to material 2 in energy range E is propotional 

to total number of filled states in material 1 and total number of vacant states in material 2 in 

E. i.e., electrons moving from material 1 to 2  

 

   [N1(E). f1(E) E] [N2(E)[l - f2(E)] E]                 (1.84a) 

 

Material 2 

N2(E) 

f2(E) 

EF2 

E 

Material 1 

Density of states N1(E) 

Probability of occupancy f1(E) 

Fermi level EF1 
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     Similarly, electrons moving from material 2 to 1 

 

   [N2(E). f2(E) E] [N1(E)[l - f1(E)] E]                 (1.84b) 

 

     By principle of detailed balance, for any system at thermal equilibrium, the rate of physical 

process in a given energy interval must be balanced by its inverse process occurring in the same 

energy interval. Therefore, the transfer of electrons from material 1 to 2 must be balanced by the 

transfer of electrons from material 2 to 1. Thus from equations (l.84a) and (1.84b), we get 

 

  [N1(E) f1(E). E] [N2(E)[l - f2(E)] E]                   

      = [N2(E) f2(E) E] [N1(E)[l - f1(E)] E]                 

  

 i.e., N1(E) f1(E) N2(E)[l - f2(E)]  

      = N2(E) f2(E) N1(E)[l - f1(E)]                   

  f1(E) [l - f2(E)] = f2(E) [l - f1(E)]              

 i.e.,  f1(E) = f2(E)  

 i.e.,  
1 2

( )/ ( )/

1 1

1 1F FE E kT E E kT
e e

− −
=

+ +
              

 

which is true only if 
1 2F FE E= . i.e., the gradient in Fermi level (c-^) is zero at thermal 

equilibrium. 

 

1.11 HALL EFFECT 

 

When electric and magnetic fields are applied simultaneously in perpendicular directions to a 

semiconductor specimen, an electric field develops in a direction mutually perpendicular to the 

applied magnetic and electric fields. This phenomenon is known as Hall effect. 

     Consider a p-type semiconductor bar of length L, thickness t and width w as shown in Fig. 

1.40. Let Bz be the applied magnetic field along the z direction and Ix be the current along the x-

direction due to the applied electric field. The net force experienced by a hole due to the 

combined electric and magnetic fields is given by 

 

  F = q ( + v × B)                  (1.85a) 

where        x y z

x y z

i j k

v B v v v

B B B

 =        (1.85b) 

 

It may be noticed that 

 

        Bx = By = 0 and vy = vz = 0 

 

     The net force experienced by a hole along the y direction is the sum of the forces due to 

electric field and magnetic field along the y direction.  
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     Force due electric field along the y-direction = qy 

     Force due magnetic field along the y-direction = q × y component of u × B 

 

   = q[-vx Bz - Bz vz] 

   = q(-vx Bz)    , Since vz  = 0 

 

Therefore the net force experienced by the hole along the y direction due to the combined 

electric and magnetic fields becomes 

 

           Fy = q(y - vx Bz)       (1.86) 

 
Fig. 1.40 Hall Effect 

 

     Equation 1.86 shows that unless an electric field is established along the y-direct the hole 

will experience a net force and acceleration in the y-direction due to vxBz product.  

     To maintain steady-state condition, y must just balance the product vxBz (y = vxBz), so that 

the net force Fy = 0. Physically, this electric field is set up when the holes are shifted slightly in 

the negative y-direction (towards side A in the figure) due to magnetic field. As the force due to 

this field balances the force due to magnetic field, the lateral force on the holes becomes zero, as 

they drift along the bar. The establishment of electric field y is known as Hall Effect and the 

resulting voltage VAB = y w is called Hall voltage. 

          vx = 
0

xJ

qp
 (Q  Jp(x) = qp0vx) 

   y = 
0

x z

H x z

J B
R J B

qp
=        (1.87) 

                                        z           Bz 

 

 

     

                                                 C(+) 

                                               y 

                     
                                                                           y 
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i.e., the Hall field is proportional to the product of current density and magnetic flux density. 

The proportionality constant 
0

1
HR

qp

 
= 

 
 is called Hall coefficient. 

     From Eqn 1.87 

                           p0 = 
x

z

AB

I
B

wtx z x z

V
q

y ABw

J B I B

q qtV

 
 
 

 
 
 

= =      (1.88) 

     Since, all the quantities in equation (1.88) are measurable the majority carrier concentration 

can be measured using Hall Effect. 

If a measurement of sample resistance R is made, the sample resistivity  can be calculated. 

     = 
RA

L
 

                  = 
/

/

CD xV IRwt

L L wt
=       (1.89) 

For a p-type semiconductor,   = qpo 

Therefore mobility,    p   = 
0

1H

o

R

qp qp



 
= =       (1.90) 

      = AB

CD z

V L

V B w
 (by eqns 1.88 and 1.89) 

Hall Effect can be used for: 

1. measurement of majority carrier concentration, 

2. measurement of majority carrier mobility and, 

3. to determine the type of unknown semiconductor sample (n or p). 

 

Example 1.14   With reference to Fig. 1.40, the following data are given: Bz = 6 kG, Ix = 1mA, 

w = 0.2 mm,          t = 100 m, L = 4 mm, VAB = -2 mV, VCD = 500 mV. Find the type of 

semiconductor, majority carrier concentration and its mobility. 

 

Solution  

VAB negative, therefore the semiconductor is n-type. 

             n0 = x z

AB

I B

qtV
 

             Bz = 6 kG = 6  10-5 Wb/cm2 

                     n0 = 
3 5

19 4 3

1 10 6 10

1.6 10 100 10 2 10

− −

− − −

  

    
 

                = 1.875   1016 cm-3 

              = 
/

/

CD x CD

x

V I V wt

L wt I L
=  

                = 
3 4

3

500 10 0.02 100 10

1 10 0.40

− −

−

   

 
 

                = 0.25 cm 

                   n  = 
0

1

qn qno




=  
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                            =
19 16

1

1.6 10 1.875 10 0.25−   
 

                = 1333 cm2/Vs. 

 

1.12 HIGH FIELD EFFECTS 

 

The relation vd = n is valid only for low values of electric fields. As the electric field is 

increased the drift velocity reaches an upper limit. This limit occurs near the mean thermal 

velocity (~ 107 cm/s at 300 K for Si). After that the energy from the field is transfered to the 

lattice rather than increasing the carrier velocity. The result of the scattering limited velocity is 

fairly constant at high fields as shown in fig 1.41. Due to velocity saturation, mobility decrease 

with increase in electric field at high electric fields sv


 
= 

 E
. This behaviour is typical of Si, Ge etc. 

 
 

Fig. 1.41 Electron drift velocity vs electric filed for silicon 

 

     But for GaAs there is a region of negative resistance due to the transfer of electrons from a 

higher curvature band to a lower curvature band. As the electric field increases electrons from  

band where mobility is high are transferred to L band where the electron mobility is low (see 

Fig. 1.18). During the transfer, drift velocity decreases due to reduced mobility. Once all the 

electrons are transferred to lower mobility band, drift velocity reaches its minimum. After that 

the velocity again increases with electric field and saturates at high electric field to mean 

thermal velocity as shown in Fig. 1.42. 

 
Fig. 1.42 Variation of electron drift velocity with electric field for GaAs 
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Example 1.15   What is the average time taken by an electron to drift 1 m in pure silicon at an 

electric field of a. 100 V/cm b. 105 V/cm? n = 1350 cm2 /Vs, p  = 480 cm2/Vs at room 

temperature. 

 

Solution  

  a. vd = n 

          = 1350  100 = 1.35  105 cm/s 

       t  = 
4

5

1 10
0.74

1.35 10d

L
ns

v

−
= =


 

  b. vd = n 

          = 1350  105 = 1.35  108 cm/s > vs (saturation velocity) 

    t  = 
4

11

7

1 10
10 .

10s

L
s

v

−
−

= =  

 

1.13 EXCESS CARRIERS IN SEMICONDUCTORS 

 

Charge carriers in semiconductors which are in excess of their thermal equilibrium value are 

called excess carriers. Excess carriers can be generated by optical excitation, electron 

bombardment, injection across a p-n junction etc. 

 

1.13.1 Photo Generation 

 

This is the process of generating charge carriers (excess) by shining light on the semiconductor. 

If a photon of energy greater than the band gap of semiconductor falls on it, the energy of 

photon is absorbed by an electron in the valence band, and is excited to the conduction band. 

This results in the generation of an EHP. i.e., optically generated electron and hole 

concentrations are equal. These carrier concentrations are in excess of the thermal equilibrium 

value. 

  i.e.,     n  = no + n 

   p  = po+ p 

   n = p 

where,  n    is the total electron concentration 

 p    is the total hole concentration 

 no    is the equilibrium electron concentration 

 po    is the equilibrium hole concentration 

 n   is the excess electron concentration 

 p  is the excess hole concentration 

     If light of intensity Io falls on one face of a semiconductor sample of thickness t as shown in 

Fig. 1.43, the amount of light transmitted through it is given by  

 

   I(t) = Io e-t       (1.91) 

 

where  is  the absorption coefficient. 
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Fig. 1.43 Absorption and transmission of light through a semiconductor specimen of 

thickness t 

 

     The absorption coefficient of a material depends on the incident wave length or energy 

( )hcE


= . The absorption coefficient as a function of incident photon energy is shown in            

Fig. 1.44. 

 
Fig. 1.44 Absorption coefficient as a function of energy of photon 

  

    If the incident photon has energy greater than the band gap energy, the velocity of the excited 

electron will be higher than the mean thermal velocity. The excess energy of electron is released 

to the lattice as heat during scattering events until its velocity becomes the thermal velocity at 

that temperature. Photogeneration and recombination process are illustrated in Fig. 1.45. 

Photo conductivity: The conductivity due to the photogenerated carriers is called photo 

conductivity. 

  op = qnopn + qpopp  

   = qnn + qpp       (1.92) 

Eg 
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Fig. 1.45 Photo excitation and radiative recombination 

 

Example 1.16   A 100 mW laser beam with wave length  = 6328 
o

A is focussed onto a GaAs 

sample 100 m thick. The absorption coefficient at this wave length is 3  104 cm-1.Find the 

number of photons emitted per second by radiative recombination in the GaAs specimen, 

assuming perfect quantum efficiency; what power is delivered to the sample as heat? 

 

Solution 

 Transmitted power,   Pt  = Ioe-t 

    Po = 100 mW = 100  10-3 W 

     = 3  104 cm-1 = 3  106 m-1 

    t = 100 m = 100  10-6 m 

    Pt = 100  10-3  e(-310610010-6) 

      0 

  Absorbed power = Incident power - transmitted power 

     = 100 mW 

  Band gap of GaAs = 1.43eV 

 Energy of incident photon E = 
hc


 

     = 
1.24

( )in m 
 

    E = 
1.24

0.6328
 = 1.96 eV 

     Energy of emitted photon is equal to the band gap of GaAs. The difference between energies 

of absorbed and emitted photons will be released to the lattice as heat. 

Therefore, the amount of power converted to heat 

     
1.96 1.43

1.96

−
=  100 10-3 W 

     = 27 mW 

 Power of emitted photon  = 100 - 27 

     = 73 mW 
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 Number of emitted photons  
power of emitted photons

energy of emitted photons
=  

     
3

19

73 10

1.43 1.6 10

−

−


=

 
 

     = 3.19  1017. 

 

1.13.2 Low-level and High Level Injections 

 

When the injected excess carrier concentration is small compared to the equilibrium majority 

carrier concentration, the injection of excess carriers is called low level injection. [i.e., n, p << 

po for n-type semiconductors and n, p << po for p-type semiconductors]. In low level injection, 

the majority carrier concentration remains almost unchanged. 

     When the injected excess carrier concentration is comparable to or greater than the 

equilibrium majority carrier concentration, the injection is called high level injection. In high 

level injection, the majority carrier concentration also changes significantly. One tenth of 

equilibrium majority carrier concentration is usually considered as the boundary between low 

level and high level injection. 

 

1.13.3 Excess Carrier Lifetime (Transient Decay of Excess EHP) - Direct Recombination 

 

In direct recombination, electron from the conduction band directly falls into a vacant state 

(hole) in the valence band and the difference in energy is released as a photon. The probability 

of recombining a hole and electron is constant at any time. Thus, the decay of excess carriers 

will have an exponential form. 

     The rate of decay at any time t is proportional to the product of number of electrons and 

number of holes remaining at time t. Therefore, the net rate of change of conduction band 

electron concentration 
( )dn t

dt

 
 
 

 equals thermal generation rate ( )2

r in  minus the recombination 

rate (rnp). 

   2( )
( ) ( )r r i

dn t
n t p t n

dt
 

−
= −      (1.93) 

     Assume that excess EHP is created at t = 0 by a flash of light and let the initial excess 

electron and hole concentrations be n and p respectively. Also, n =p. As electrons and 

holes recombine in pairs, the instantaneous values of carrier concentrations n(t) and p(t) are 

also equal. 

    n(t)  = no + n(t) 

       p(t)  = po + p(t) 

and equation (1.93) becomes 

   2 0
0 0( ) ( ) [ ( )] 0r r i

dnd
n t n n t p p t n

dt dt
    

−  
= + + − = 

 
Q  

  2 2

0 0 0 0( )( ) ( ) ( ) ( )r r in p n t p n n t n p t n t      = + + + − =  Q  

  ( )2 2

0 0 0 0( ) ( ) ( )r r r in p n t n t n p n     = + +  =      (1.94) 

For low-level injection 2n(t) is negligible compared to other terms. 
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For p-type semiconductor, 

               
0 0 0n p p+   

   
0( ) ( )r

d
n t p n t

dt
  

−
 =  

Solution to this equation is 

     n(t) = n 0 /r np t t T
e ne

− −
=        (1.95a) 

where n =(rp0)-1  is called recombination lifetime. n is also called minority carrier lifetime. n 

is the excess carrier concentration at t = 0. 

 
Fig. 1.46 Exponential decay of excess holes in a p-type semiconductor 

 

Similarly, the decay of excess holes in n-type semiconductor is given by  

  p(t) = p 0
/ pr

tp t
e pe

 −−
=                   (1.95b) 

where p = (rn0)-1 and p is p at t = 0.  

     In the case of direct recombination, the excess majority carriers decay at the same rate as the 

minority carriers. 

 

1.13.4 Steady-State Carrier Generation 

 

Under thermal equilibrium, the generation rate is balanced by recombination rate, so that 

equilibrium values of no and po are maintained 

    g(T) = 2

r in = r n0po 

     Consider a steady-state optical generation rate gop, added to thermal equilibrium. Now, the 

carrier concentration will increase to new steady-state values. Balance between generation and 

recombination is maintained under steady-state conditions. 

 

  i.e.,   g(T)  + gop = r np 

                   =r (n0 + n) (po + p)   

 

For direct recombination with no trapping, n = p 

          g(T) +gop    = r n0po + r [(n0 + po)n + 2n] 

p(t) 

 

 

 

 

 

 

p                     p
/t pe −     

 

 
 

po 
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r n0po = g(T) and  2n term can be neglected for low-level injection. 

   0( )
rop o

n

n
g n p n


 


 = + =      (1.96a) 

where n = 
( )0 0

1

r n p +
 

    n  = gopn       (1.96b) 

                                            p = gopp  

 

i.e.,   Excess carrier concentration = (excess carrier generation rate) x (minority carrier lifetime) 

 

Example 1.17   A direct band gap semiconductor with ni = 1010 cm-3 is doped with 1015 cm-3 

donors. Its low-level carrier lifetime n = p = 10-7 s. 

a. If a sample of this material is uniformly exposed to a steady optical generation rate of gop=2 × 

1022 EHP/cm3s; Calculate the excess carrier concentration n = p. Note: This excitation rate 

is not low-level, but you may assume that r is the same. 

b. If the carrier lifetime () is defined as the excess carrier concentration divided by the 

recombination rate, what is  at this excitation level? 

 

Solution 

  ND  = 1015cm-3;  n0 = 1015 cm-3 

   p0  = 
2 20

15

0

10

10

in

n
= =  105 cm-3 

      = 
( )0 0

1

r n p +
 

  r   = 10-8 cm-3 s-1 

 a.         gop   = 2 × 1022 EHP/cm3s 

  n  = gop n 

        = 2 × 1022 × 10-7 = 2 × 1015 

       p = n = 2 × 1015 cm-3 

 b.           n   = no + n = 1015 + 2 × 1015 = 3 × 1015 

   p   = po + p = 105 + 2 × 1015 = 2 × 1015 

       = 
15

8 15 15

2 10

10 3 10 2 10r

n

np



 −


=

   
 

                                 = 3.33 × 10-8 s. 

1.13.5 Quasi Fermi Levels 

 

The mass action law nopo = 2

in is not applicable in the presence of excess carriers. Under thermal 

equilibrium, the carrier concentrations [no and po] are represented in terms of equilibrium fermi 

level, EF. When excess carriers are present, the carrier concentrations cannot be represented by 

the equilibrium Fermi level. Seperate fermi levels are required to express the electron and hole 

concentrations and they are known as Quasi fermi levels. Electron quasi fermi level is expressed 

by Fn and hole quasi fermi level by Fp. In terms of quasi fermi levels, the carrier concentrations 

in the presence of excess carriers may be expressed as 
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    ( )/n iF E kT

in n e
−

=       (1.97a) 

        
( )/i pE F kT

ip n e
−

=  and      (1.97b) 

               
( )/2 n pF F kT

inp n e
−

=       (1.97c) 

     The quasi-Fermi levels illustrate the deviation from equilibrium caused by excess carriers. 

     When excess carriers are present, the deviations of Fn and Fp from EF indicate how far the 

electron and hole population are from the equilibrium values, no and po. Example 1.18 illustrates 

the effect of excess carriers on Fermi level position. 

 

Example 1.18   A silicon sample with arsenic doping of 1016 atoms/cm3 is steadily illuminated 

such that gop = 1021 EHP cm-3 s-1. If Tn = Tp = 10-6 s, calculate separation between quasi-Fermi 

levels and show the positions of equilibrium and quasi-Fermi levels at 300 K. 

 

  EC _______________________ 

  Fn _______________________ 

  EF _______________________ 

  E1 _______________________ 

  Fp _______________________ 

  EV _______________________ 

   Fig. Ex.1.18 

 

Take ni at 300 K as 1.5 × 1010 cm-3 

  ND    = 1016 cm-3 >> ni 

   no = ND = 1016 cm-3 

       p0 = 
( )

2
102

16

0

1.5 10

10

in

n


= =  2.25 × 104 cm-3 

      n = p = gop p 

           = 1021 × 10-6 = 1015 cm-3 

        n = n0 + n 

           = 1016 + 1015 == 1.1 × 1016 cm-3 

         p = po + p = 2.25 × 104 + 1015 =  1015 cm-3 

       ( )/n iF E kT

in n e
−

=    

        Fn - Ei    =  kT ln 
i

n

n
 

         = 0.026 ln 
16

10

1.1 10
0.351

1.5 10
eV


=


 

     
( )i pE F

kT
ip n e

−

=    

          Ei - Fp     =  kT ln 
i

p

n
= 0.026 ln 

15

10

10

1.5 10
= 0.288 eV 

 

0.639 eV 

0.003 eV 
0.351 eV 

0.288 eV 
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At equilibrium,  

           ( )/

0
F iE E kT

in n e
−

=    

       EF - Ei    =  kT ln 0

i

n

n
 

                = 0.026 ln 
16

10

10
0.348

1.5 10
eV=


 

        Fn - Fp   = Fn - Ei + Ei - Fp 

   = 0.351 + 0.288 = 0.639 eV. 

 

1.13.6 Recombination Mechanisms 

i. Direct band to band recombination 
 

In direct band to band recombination an electron at conduction band minimum directly falls into 

a hole at the valence band maximum, releasing the difference energy as a photon as illustrated 

in Fig. 1.47. As a result an electron hole pair vanishes. This type of recombination mechanism is 

seen in direct band gap semiconductors such as GaAs, InP, etc. Generation and recombination 

are continuous process in a semiconductor. Lifetime is the average time for which a charge 

carrier survives without recombination after it is generated. 

 
Fig. 1.47 Optical generation and direct recombination 

 

ii. Indirect Recombination Via Deep Energy Levels in the Band Gap  
 

Impurity atoms other than donors and acceptors and crystal defects in a semiconductor 

introduce localised energy levels deep in the band gap, away from the band edges. These levels 

act as stepping stones for electrons between conduction band and valence band, 'making a 

substantial enhancement in the recombination process. Depending on the location in the band 

gap, this level can act as a trap or recombination center for electron or hole. 

     An electron trap has a high probability of capturing a conduction band electron and setting it 

free after sometime. A hole trap has high probability of capturing a hole and subsequently 

releasing it to the valence band. 

     At a recombination centre, the probability of electron and hole captures are nearly equal, thus 

an electron capture is followed by a hole capture, and this results in the elimination of an EHP. 

Fig. 1.48 illustrates the four steps that occur in the recombination of an EHP through a deep 

level. 

a) Capture of electron from conduction band by centre located at Ef. 

b) Emission of an electron from the centre to the conduction band. 
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c) Capture of a hole from the valence band. Here, the centre emits electron to the 

valence band which is equivalent to the capture of a hole. 

d) Centre captures an electron from the valence band, which is equivalent to the 

emission of a hole. 

 
Fig. 1.48 Steps involved in indirect recombination via traps 

 

     For the level to act as a recombination centre, the electron capture process (a) must be 

followed by the hole capture process (c) and both these processes should have nearly equal 

probability. If electron capture (a) is followed by electron emission (b) this centre acts as 

electron trap. If hole capture (c) is followed by a hole emission (d) the centre acts as a hole trap. 

 

iii. Auger Recombination 

 

Auger recombination is a three particle process in which either two electrons and one hole or 

two holes and one electron are involved. This type of recombination is possible for direct band 

to band recombination and also for indirect recombination involving traps. 

 
Fig. 1.49 Auger recombination (a) the two electrons and one hole (eeh) process (b) the one 

electron and two holes (ehh) process                      
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     The auger recombination process for a direct band to band recombination is illustrated in Fig 

1.49. The two electrons and one hole process (eeh) is shown in Fig. 1.49(a). Hence electron 1 in 

the conduction band makes a transition to empty state 1' in the valence band. The energy of 

EHP is transferred to the nearby electron 2 and it is excited to 2'. The excited electron imparts 

its kinetic energy to the lattice and comes back to conduction band minimum. 

     Auger recombination involving two holes and one electron is shown in Fig. 1.49(b)). Here, 

the recombining electron 1 on transition to 2  imparts its energy to a hole at 2' which transfers to 

a state 2 deep in the valence band. 

 

iv. Trap Aided Auger Recombination 

 

In Fig. 1.50(a) the trapped electron makes a transition to the valence band by giving its energy 

to an electron in the conduction band. This process is significant only in a heavily doped n-type 

semiconductor with a high concentration of traps below EF. 

 
Fig. 1.50 Trap aided Auger recombination 

 

     Recombination involving two holes and one electron is shown in Fig. 1.50(b). Here, the 

electron makes a transition to an unoccupied trap level in the band gap and gives its energy to a 

hole in the valence band. This is significant in heavily doped p-type semiconductor with a large 

density of traps located above Fermi level. 

 

1.13.7   Origin of Recombination Centres 

 

The major origin of recombination centres are impurities, imperfection due to radiation damage 

and unsaturated bonds at the surface.  

Impurities: Impurities which introduce levels near the middle of the band gap act, as efficient 

recombination centres. Eg: Au in Si, Cu in Ge. Gold introduces an acceptor level 0.54 eV below 

EC in silicon. Gold doping increases recombination rate and therefore reduces lifetime. Thus, 

lifetime can be controlled by gold doping.  

Radiation damage: High energy particles such as neutrons, protons, electrons and -rays can 

displace atoms in a semiconductor lattice from their normal positions creating vacancies and 

interstitials. The lattice defects created by them can behave like deep impurities. The lifetime (of 

minority carriers) decrease with radiation doze. 

     Electron irradiation is a process with greater control and uniformity to control lifetime. but it 

has the following disadvantage. Radiation induced recombination centres anneal out after a 

period of time, even if the device is not subjected to high temperature. 

Unsaturated bonds at the surface: At the surface of a semiconductor, the lattice is abruptly 

terminated resulting in unsaturated bonds for the surface atoms. This irregularity introduces 
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large density of localised energy levels in the forbidden gap and these levels are called surface 

states. Surface states with levels at the middle of the band gap act as recombination centres. The 

effect of surface recombination is illustrated in Fig. 1.51. 

     Density of surface states on clean surface  1015 cm-2. Density of surface states on oxide 

coated surface  1012 cm-2. This is because, due to presence of oxide layer, some of the bonds 

get saturated. Carrier recombination at the surface is characterized by surface recombination 

velocity (s). 

  
Excess carrier flux reaching the surface

Concentration of excess carrier at the surface
s =  

 
Fig. 1.51 Excess carrier recombination near the surface of a semiconductor with high 

density of recombination centres (a) illuminated semiconductor (b) excess minority carrier 

distribution 

Due to increased recombination at the surface, pn(0) < pn(x) beyond the surface.  

pn(0) is the concentration at x = 0 (surface) 

pn(x) is the concentration at depth x from the surface 

This cause a net flux of excess carriers given by 

    
0

. n

p

x

p
D

x
=


−


= s(pn(0) - pno)     (1.98) 

pno is equilibrium hole concentration in n-type material. 

 s  105 cm/s for sand blasted surface 

 s  10 - 100 cm/s for clean etched surface 

 

1.13.8 Diffusion of Charge Carriers 

 

When excess carriers are generated non-uniformly in a semiconductor, the carrier 

concentrations vary with position in the sample. Thus, charge carriers will move from regions of 

high concentration to low concentration. This type of motion is called diffusion and the current 

due to diffusive motion of charge carriers is called diffusion current.  

     Fig. 1.52 shows the spreading of a pulse of electrons by diffusion. Diffusion is the natural 

result of the random motion of individual particles. A pulse of excess electrons injected at x = 0 

at t = 0 will spread out in time as shown in Fig. 1.52. Initially excess electrons are concentrated 

at x = 0, but as time elapses these excess electrons spread out and finally the carrier 

concentration becomes uniform throughout and n(x) becomes constant. 
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Fig. 1.52 Spreading of a pulse of electron by diffusion  

 

Diffusion current (Derivation)  

 

Consider an arbitrary one dimensional distribution of electrons n(x) as shown in Fig. 1.53. 

Divide x into segments of width l  (mean free path which is a very small length), with n(x) 

evaluated at the centre of each segment. The electrons in any segment have equal chances of 

movement towards left or right since the movement is purely random.  

     In one mean free time, half of the electrons in segment 1 will cross xo and move into segment 

2 and half the electrons in segment 2 will cross xo and move into segment 1. 

     Let electron concentration in segment 1 be n1 and electron concentration in segment 2 be n2, 

then 

  Total number of electrons in segment 1 = n1 l A 

  Total number of electrons in segment 2 = n2 l A 

where A is the area of cross section of the sample. 

 
Fig. 1.53 An arbitrary one dimensional electron distribution in a semiconductor (a) n(x) is 

divided into segments of width I (b) expanded view of two of the segments  
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Therefore, net number of electrons crossing xo from left to right in one mean free time 

   = 
1

2
(n1 l A - n2 l A)      (1.99) 

     The rate of electron flow (electrons/unit time) in positive x-direction per unit area (electron 

flux density) is given by  

  
Net number of electrons moving in x direction

( )
time Area of cross section

n x =


 

   = 
( )1 2

1
n n

2
lA lA

tA

−

 

   = ( )1 2n n
2

l

t
−   

Since l  is a small differential length, n1 - n2 can be written as 

  n1 - n2 = 
( ) ( ) ( )n x n x x dn x

l l
x dx

− +  −
 =


               (1.100) 

where x is taken as the middle of segment 1 and x = l       

  n(x) = 
2 ( )

2

l dn x

t dx

− 
 
 

 

   = 
2 ( )

2

l dn x

t dx

−
  

   = 
( )

n

dn x
D

dx
−                (1.101a) 

where Dn is the electron diffusion constant in cm2/s. 

        
2

2
n

l
D

t
=  

Similarly     p(x) = 
( )

p

dp x
D

dx
               (1.101b) 

where Dp is hole diffusion constant. 

     The particle flux density multiplied by the charge of the particle gives current density. 

  Jn diff    =   (-q) n  

   =  q
n

dn
D

dx
                 (1.102a) 

  Jp diff    =  q p  

   =  -q
p

dp
D

dx
                  (1.102b) 

     The total current in a semiconductor is the sum of drift and diffusion currents due to 

electrons and holes. The current density due to electrons is  

  Jn(x) = qnn(x) (x) + q 
( )

n

dn x
D

dx
              (1.103a) 

     The current density due to holes is  

   Jp(x) = qpp(x) (x) - q 
( )

p

dp x
D

dx
              (1.103b) 

and the total current is  
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   J = Jn(x) + Jp(x)  

     The direction of carrier flow and current flow in a given electric field and carrier gradient is 

shown in Fig. 1.54. 

 
Fig. 1.54 Direction of drift and diffusion of charge carriers and the resulting currents  

 

It can be observed that 

(1) For a given direction of field, electrons and holes move in opposite directions and the 

resulting drift current is along the same direction. 

(2) For the same gradient (sign) electrons and holes move in the same direction and the 

resulting currents are in opposite directions. 

(3) Minority carriers can provide large diffusion currents, because diffusion current is 

proportional to the gradient in carrier concentration and not to the number of carriers. 

 

1.13.9 Energy Band Diagram of a Semiconductor with Applied Electric Field 

 

The energy band diagrams of a uniformly doped n-type semiconductor under equilibrium 

condition and with an electric field applied along the positive x-direction are shown in  

Fig. 1.55. 

 
Fig 1.55 Energy band diagrams of a semiconductor (a) at equilibrium (b) in an electric 

field x 

     The applied electric field is proportional to the gradient in electron energy as given by 

equation (1.105). Therefore, energy bands bend upward in the direction of the electric field. 

Energy bands of a semiconductor will be flat when electric field in it is zero. 
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1.13.10 Einstein Relations 

 

Einstein relation states that the ratio of diffusion coefficient to mobility of electrons and holes 

are equal under thermal equilibrium and is equal to the volt equivalent of temperature (kT/q). 

   

 i.e.,   
p n

p n

D D kT

q 
= =                               (1.104) 

     Electrostatic potential and potential energy of a particle of charge q are related as follows 

  Electrostatic potential V(x) = 
( ) Potential energy

Charge

xE

q
=  

                     = 
( )xE

q−
E(s) (for electrons) 

Also, electric field 

               (x) = 
( )dV x

dx

−
 

         
( )xi C i V

dEE dE dE dEd

dx q dx dx dx dx

  −
= = = =   

−   
Q  

(i.e, All energies in the EB diagram bend equally in a given electric field) 

              (x) = 
1 idE

q dx
                  (1.105) 

Under thermal equilibrium Jn = Jp = 0 

 i.e.,            Jp  = qpo(x) p(x) - q 0 ( )
0p

dp x
D

dx
=  

 qp. po(x). (x) = q 0 ( )
.p

dp x
D

dx
 

   (x) = 0 ( )1
. .

( )

pD dp x

p p x dx
                 (1.106) 

     po(x) = ( ) ( )/i FE x E x kT

in e
−  by equation (1.54) 

  ( ) ( )/0 ( ) 1
i FE x E x kT i F

i

dp x dE dE
n e

dx kT dx dx

−  
=  − 

 
 

             = 0 ( ) i F
p x dE dE

kT dx dx

 
− 

 
                 (1.107) 

     Substituting (1.107) in (1.106) 

      0
( )

0

( )1
.

( )

p i F
x

p

D p x dE dE

p x kT dx dx

 
=  − 

 
E  

Under thermal equilibrium, 

  0FdE

dx
=  

  ( )idE
q x

dx
= E x x x x(by equation (1.105)) 
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  (x) =
1

. .
pD

p kT
 qx 

      
p

p

D kT

q
=  

i.e.,      n

n

D kT

q
=  

Similarly,     n

n

D kT

q
=  

or    
p n

p n

D D kT

q 
= =  

 

1.13.11 Continuity Equation (Effect of Diffusion and Recombination) 

 

Continuity equation is an important equation for the analysis of semiconductors. It can be used 

to determine the distribution of charge carriers in a semiconductor. It considers the time and 

space variation of charge carriers simultaneously. A simplified continuity equation in 

differential form is derived below. 

     Consider a semiconductor bar with area of cross-section A. Let Jp(x) be the current density 

entering an elemental volume xA and Jp(x + x) be the current density leaving the elemental 

volume as shown in Fig. 1.56. 

 
Fig. 1.56 Current density entering and leaving elemental volume xA 

 

     The rate of increase of hole concentration in the elemental volume 
p

t

 
 

 
is given by 

p

t




 = rate of hole build up = net flux/unit volume of hole in elemental volume 

        - net recombination rate in it  

     = (hole flux/unit volume entering elemental volume xA 

        - hole flux/unit volume leaving xA - recombination rate) 
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   Jp = qp 

   p = 
pJ

q
= flux/unit area  

  flux/unit volume = 
pJ

q x
 

 i.e.,             
p

t




 =

( ) ( )p p p

p

J x J x x

q x q x





+ 
− −

 
 

       
[ ( ) ( )]1 p p p

p

J x x J x

q x





+  −−
= −


 

       
1 pp

p

J

q x T





−
= −                (1.108a) 

 

The above equation is called continuity equation for holes. 

Similarly, the continuity equation for electrons is given as 

             
1 nn

n

n J

t q x T






= −


                (1.108b) 

For a uniformly doped specimen the current is only due to diffusion, 

i.e.,   Jp = -qDp. p

dp d
qD p

dx dx
= −  

 (because, p = po + p and 0 0
dp

dx
=  for uniformly doped semiconductor) 

Similarly,                   Jn = q Dn . n

dn d
qD n

dx dx
= −  

Therefore, Equations (1.108a) and (1.108b) reduces to 

  
2

2p

p

p p p
D

t Tx

 




= −


 

  
2

2n

n

n n n
D

t Tx

 




= −


                (1.109b) 

Equations (1.109a) and (1.109b) are called diffusion equations. 

 

1.13.12 Steady-State Carrier Injection and Diffusion Length 

 

Under steady-state conditions the time derivatives are zero and the diffusion equations reduces to 

         
2

2 2

n n n

d n n n

D Tdx L

  
= =                   (l.110a) 

          
2

2 2

p p p

d p p p

D Tdx L

  
= =                  (l.110b) 

where Ln = n nD  is called electron diffusion length and Lp = p pD   is the hole diffusion 

length. 
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     These equations are called steady-state diffusion equations. The solution of the steady- state 

diffusion equation for holes is of the form 

 

  p(x) = C1 ex/Lp+C2 e-x/Lp                                   (1.111) 

 

     Consider a uniformly doped semi-infinite n-type semiconductor bar in which excess carriers 

are introduced at x = 0. Let p(x=0) = p. The excess carrier concentration decays to zero at the 

end of the semiconductor bar (x = ). 

 

  At x = 0 ,   p = p ; C1 + C2 = p 

  At x →,  p = 0 ;    C1 = 0 

    C2 = p 

 

 
 

Fig. 1.57 Decay of excess holes and diffusion length 

 

Thus the solution is                  p(x) = p e-x/Lp                                  (1.112) 

 

The distribution of excess carrier given by eq 1.12 is shown in Fig. 1.17. 

 

The injected excess carrier concentration decay exponentially to 1/e times its initial value at a 

diffusion length from the point of injection. It can be shown that Lp is the average distance a 

hole diffuse before it recombines. 

 

Example 1.19  Prove that Lp is the average distance a hole diffuse before it recombines.  

     The probability that a hole injected at x = 0 survives to x without recombination is the ratio 

of the excess carrier concentrations at x and at 0, and is equal to 
/

/
p

p

x L
x Lpe

e
p

−
−

=


. 

 The probability that a hole recombines in a subsequent interval dx is 

  

 

p(x) 

 

 

 

 

 

  

         
/ px L

pe
−

  

    
p

e


 

 
         0              Lp           x 
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( ) ( ) ( ) ( )

( ) ( )

p x p x dx p x p x dx dx

p x dx p x

   

 

− + − +
=  

       = ( ). .p

x

Ld dx d dx
p x pe

dx px dx px


 

−

− −
=   

      
1 1

. ( ).p

x

L

p p

dx dx
pe p x

L px L px


 

−
 

= − =  − 

 

       = 
1

p

dx
L

 

     The probability P(x) that a hole injected at x = 0 recombines in a given distance dx, is the 

product of the probability that it survives to x without recombination and probability of 

recombination in subsequent interval dx. 

 i.e.,         p(x) = .p

x

L

p

dx
e

L

−

 

The average distance a hole diffuse before recombination is 

       < x > = 
/

0

px L

p

e
x

L

−

  

                ( ) ( )/ /

0

1
. .1p px L x L

p p

p

x e L e L dx
L


− − = − − −

   

                ( )/ /

0

p px L x L

p pxe e L L


− − = − + − =
 

 

 

1.13.13 Built in field 
 

Built in field is the field present in a semiconductor under thermal equilibrium. Electric fieldbe 

present in a semiconductor at equilibrium, if a carrier concentration gradient exists in the 

semiconductor. 
 

Example 1.20   In a silicon sample, the doping profile is in such a way that no = Gx where G is 

a constant. Determine the built-in field in the semiconductor if no n0 >> ni.  

     Under thermal equilibrium, 

             Jp = qn0 n(x)
0 0n

dn
qD

dx
+ =  

          (x)
0

0

( )1n

n

D dn x

n dx

−
=   

         n

n

D kT

q
=  by Einstein relation 

    0 ( )dn x
G

dx
=  

     (x) 
1kT

G
q Gx

−
=    

               =
kT

qx

−
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1.13.14 Minority Carrier Injection-Drift And Diffusion Currents 

 

Consider a long semiconductor bar doped uniformly with ND donor atoms/cm3 so that no  ND. 

Let A be its cross-sectional area. It is illuminated at x = 0 as shown in Fig. 1.58 so that there is a 

steady generation of EHP and the resulting excess carrier concentration be p = n (at x = 0). 

Since the bar is of n-type, the hole drift current is negligible.  

    Jp  = -q .p

dp
D

dx
 

         
2

2
.

p

p

J p
qD

x x

 
= −

 
 

 
Fig. 1.58 Steady-state injection of minority carriers into a semiconductor 

 

     Applying this in the continuity equation, 

   
1

p

p Jp p

t q x





 − 
= −

 
 

   0
p

t


=


 (steady-state) 

          
2

2 2

p p p

d p p p

dx D L

 


 = =  

     Solution to this equation is 

          p(x) = pe-x/Lp 

i.e., the injected hole concentration decays exponentially. 

     Minority carrier diffusion current, 

  Ip(x)   = -q A Dp 
d

dx
(pe-x/Lp) 

   = q A
p

p

D

L
pe-x/Lp 

   = q A
p

p

D

L
[pn(0) - pn0] e-x/Lp 

i.e., the minority carrier diffusion current also decays exponentially with x. 

     Assuming that electrical neutrality is maintained in the semiconductor, i.e., p=n, (under 

low-level injection) throughout the bar 

   
dp dn

dx dx
=  

Electron diffusion current, 
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  In diff = q A Dn
dn

dx
 

         = q A Dn
dp

dx
 

But - q A Dp 
dp

dx
 = Ip  (hole diffusion current) 

            In diff = n
p

p

D
I

D

−
 

Hence, electron and hole diffusion currents vary almost similarly with distance 

  2n

p

D

D
 for Ge and 3 for Si 

 

Drif Currents 

 

The total current must be zero everywhere in the semiconductor. 

i.e.,     Ip + (In drift - In diff) = 0 (see Fig. 1.59) 

 Ip + 0n

n drift p

p

D
I I

D

 
− = 

 
 

 

                1n

n drift p

p

D
I I

D

 
 = − 

 
 

 

i.e., majority carrier drift current also decrease exponentially with distance. 

 
Fig. 1.59 Excess electron and hole distribution for the specimen shown in Fig. 1.58. 

 

     The drift current is due to the electric field present as a result of the difference in distribution 

of the excess electrons and holes as shown in Fig. 1.59. 

   (x) = 
n drift n drift n drift

n n

J J I

qn Aqn  
= =  

   (x) 
1

1n

p

n p

D
I

Aqn D

 
= − 

 
 

                 (1.113) 

The derivation was based on the assumption that Jp drift = 0 

But   Ip drift = Aqpp(x)                  (1.114) 

Using (1.113) and (1.114) 

   Ip drift = 1
p n

p

n p

Dp
I

n D





 
− 

 
 

 

   p << n Ip drift << In drift  
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1.13.15 Gradient in Quasi-Fermi Levels 

 

At equilibrium, gradient in Fermi level is zero. But a combination of drift and diffusion with a 

net current implies a gradient in quasi Fermi levels. The total electron current is given by 

       Jn(x) = qn(x)n x + q Dn. 
( )dn x

dx
                (1.115) 

But    
( )dn x

dx
 = ( )/n iF E kT

i

d
n e

dx

−  

   =
( ) n idF dEn x

kT dx dx

 
− 

 
                 (1.116) 

Substituting equations (1.116) in (1.115) and applying Einstein relation, 

       Jn(x) = qn(x)n x + n n(x) n idF dE

dx dx

 
− 

 
 

           = qn(x)n x + n n(x) ndF

dx
−  n n(x) idE

dx
      

                                     =qn(x)n x + n n(x) ndF

dx
−  n n(x)qx  ,by equation (1.105) 

           = n n(x) ndF

dx
  

           = qn n(x). nFd

dx q

 
 
 

  

           = n(x). nFd

dx q

 
 
 

                  (1.117) 

     Equation (1.117) shows that total electron current is proportional to the gradient in electron 

quasi-Fermi level. 

Similarly,       Jp(x) = qp p(x) 
pFd

dx q

 
 
 

  

           = p(x) 
pFd

dx q

 
 
 

                  (1.118) 

 

Table 1.9 Important properties of intrinsic germanium, silicon and gallium arsenide at           

300 K 

 

Properties Ge Si GaAs 

Energy band gap Eg (eV) 0.67 1.11 1.43 

Electron mobility n(cm2/Vs) 3900 1350 8500 

Hole mobility p (cm2/Vs) 1900 480 400 

Resistivity ( cm) 43 2.5  105 4  108 

Lattice constant a(Å) 5.66 5.43 5.65 

Relative permittivity r 16 11.8 13.2 
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Density (g/cm3) 5.32 2.33 5.31 

Intrinsic carrier    

concentration ni (cm-3) 2.5  1013 1.5  1010 2  106 

 

Solved Problems 

Problem 1.1 

The lattice constant of diamond crystal is 3.56 A. Calculate the number of atoms/cm2 in the 

diamond crystal in (100) and (111) planes. 

Solution 

 (100) plane is a face of the cube as in Fig. Sp. 1.16(b). 

 Number of atoms on a face of the cube  =  
1

4
 4 + l = 2 

    Area of face = a2 

           No. of atoms/cm2 on (100) plane = 
Number of atoms on a face 

area of the face
 

      = 
2 8 2

2 2

(3.56 10 )a −
=


= 1.578  1015 

 (111) plane in a cubic cell represent an equilateral triangle of side 2a  as in Fig. 

Sp.l.l(a). 

 
Fig. Sp.1.1 

 

Number of atoms/equilateral triangle of side 2a  

      = 
1 1

3 3 2
2 6

 +  =  

   area of the triangle  = 
1

2
 2a . 2a sin 60 

      = 23

2
a  

 Number of atoms/cm on (111) plane = 
2

2

3

2
a

 

      = 
8 2

2 2

3 (3.56 10 )−



 
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      =  1.822  1015. 

Problem 1.2 

Determine the density of GaAs, given the lattice constant a = 5.65Å, molecular weight   

= 144.63 g/mole and Avogadro number is 6.02  1023 atoms/mole. 

 

Solution 

In one unit cell, there will be 4 atoms of Ga and 4 atoms of As or 4 molecules of GaAs. 

  Number of GaAs molecules/cm  =  
3

4

a
 

      = 
8 3

4

(5.65 10 )−
 

      =  2.217  1022 atoms/cm3 

 Density of GaAs' equals the weight of atoms in 1 cm3 i.e., weight of 2.217  1022  atoms. 

 Weight of Avogadro number of molecules = molecular weight 

  density  = 3molecular weight  
number ot atoms / cm

Avogadro number
  

   = 
22

23

144.63  2.217  10

6.02  10

 


 

   = 5.3 gm/cm3 

Problem 1.3 

Determine the energy of a photon having wave length a.  = 10,000 Å and b.  = 10 A. 

Express the result in Joules and eV. 

 

Solution  

   1 Å  = 10-8 cm 

a.  = 10,000 Å = 10-4 cm 

 Energy of photon = E = hυ= 
hc


 

 h = 6.626  10-34 J/s     C = 3  1010 cm/sec 

     E  = 
34 10

4

6.626 10 3 10

10

−

−

  
 

    = 19.878  10-20 J 

    = 
20

19

19.878 10

1.6 10

−

−




eV = 1.242 eV 

b.  = 10 Å = 10-7 cm 

 Energy of photon E  = 
34 10

7

6.626 10 3 10

10

−

−

  
 

    = 19.878  10-17 J 

    = 
17

19

19.878 10

1.6 10

−

−




eV 

    = 1242.37 eV. 
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Problem 1.4 

 

The velocity of a free particle is 5  105 m/s. The mass of the particle is 10-30 kg. Determine a. 

the energy of particle b. the de-Broglie wave length. 

 

Solution 

           v   =   5  105 m/s = 5  107 cm/s 

          m   =  10-30 kg = 10-27 g 

a.                         Energy =  
1

2
mv2 

           =  
1

2
 10-27  (5  107)2 

                = 12.5  10-13 J 

b. de-Broglie wavelength,        =  
h

mv
 

              = 
34

27 7

6.626 10

10 5 10

−

−



 
 

          = 1.325  10-14 cm. 

 

Problem 1.5 

For a particle that has a mass of 2 g and energy 1.5 kT, determine de-Broglie wave length at 300 

K. kT = 0.026 eV. 

 

Solution  

 Given  E = 1.5 kT 

   kT = 0.026 eV 

    =  0.026  1.6  10-19 J 

   E = 1.5  0.026  1.6  10-19 J 

 But  E = 
1

2
mv2 

 or  v = 
2E

m
 

    =  
19

 2 1.5 0.026 1.6 10

2

−   
 

    =  7.9  10-11 cm/s 

de-Broglie wave length,  = h/mv 

    = 
34

11

6.626 10

 2 7.9 10

−

−



 
 

    =  4.19  10-24 cm.  

 

Problem l.6 

Show that the probability that an electron with a mean free time t in a semiconductor remains 

unscattered for a time t is proportional to 
ˆ( / )t te − . Consider a semiconductor with different 
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scattering processes independent of each other. Show that the resultant mean free time t  is 

given by
1 2

1 1 1 1
... .

nt t t t
= + +   

 

Solution  

Let No be the initial number of particles at t = 0 and the number of particles that are unscattered 

at time t be N(t). The rate of decrease of N(t) is proportional to N(t) itself. So, 

 

   
( )

( )
dN t

N t
dt

− =  

 

where  is a constant of proportionality.  has dimension of reciprocal time. So we can write             

 = 
1

t
. 

  i.e., 
( ) ( )dN t N t

dt t

−
=  

     The solution of the equation is N(t) = N0
( / )t te −  and 

0

( )N t

N
 is the probability p that a particle 

remain unscattered for time t. 

          p = ( / )t te −  

 

     If we have n independent scattering process with probabilities p1, p2, p3 . . . pn with mean free 

time 
1 2 3 ,, , ... nt t t t  the composite probability is given by 

  p = p1 p2 p3 . . . pn   

  ( / )t te −  = 31 2 // / /... nt tt t t t t te e e e−− − −    

            = 1 2

1 1 1
...

n

t
t t t

e

 
 
 
 

− + +

 

               
1 2

1 1 1 1
...

nt t t t
 = + +  

Problem 1.7 

Derive expression for the displacement of Fermi level in an intrinsic semiconductor from the 

middle of its band gap at equilibrium. 

 

Solution 

For intrinsic semiconductor under thermal equilibrium, 

       po = no 

 i.e.         NV 
( )/i VE E kTe− − = NC 

( )/C iE E kT
e

− −  

  ( 2 )/iV CE E E kT C

V

N
e

N

− + −
=  

 

 

 

 

             EC 

 

 

2

2

V C

g

V

E E

E
E

+

= +

              

 EV 

 

 

 

 

  

 

2

gE
 

 

2

gE
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Fig. Sp.1.7 

Taking natural logarithm 

 EV + EC  - 2Ei = kTln C

V

N

N
 

 
2

V C

i

E E
E

+
−  = 

2

kT
ln C

V

N

N
  

          =
2

kT
ln 

3
* 2

*

n

n

m

m

 
 
 

 (by equations (1.40) and (l.46))  

         =  
3

4
kTln 

*

*

n

p

m

m

 
 
 
 

 

 EV +
2

gE
 - Ei  =  

3

4
kTln 

*

*

n

p

m

m

 
 
 
 

(see fig. Sp. 1.7) 

 

Remark:    If * *

2
; 0.V CE E

n p im m E
+

= − =   Fermi level lies at the middle of the band 

gap ( )2
.gE

VE + Usually effective masses of electrons ( *

nm ) and holes ( *

pm ) are different in 

semiconductors. Because of this the Fermi level in intrinsic semiconductor will be slightly 

displaced from the middle of the band gap as shown by the above equation and as illustrated in 

the next problem. 

 

Problem 1.8 

Find  the displacement of intrinsic Fermi level from the middle of the band gap for Ge, Si, and 

GaAs at 300 K. The effective masses are as given below. 

 Ge Si GaAs 
*

nm  0.55m0 1.18 m0 0.068 m0 

*

pm  0.37 m0 0.81 m0 0.56 m0 

 

Solution  

      Ei = EV +
2

gE
- Ei 

              =
3

4
kTln 

*

*

n

p

m

m

 
 
 
 

 

  Ei for Ge      =  
3

4
 0.026 ln 

0.55

0.37

 
 
 

= 7.73  10-3 eV 
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  Ei for Si        =  
3

4
 0.026 ln 

1.18

0.81

 
 
 

= 7.73  10-3 eV 

  Ei for GaAs   =  
3

4
 0.026 ln 

0.068

0.56

 
 
 

= -0.0411 eV 

Remark :   Ei is below middle of band gap for Ge and Si and above it for GaAs. 

 

Problem 1.9 

For a silicon sample at 300 K po = 4  1012 cm-3 a. determine the electron density b. determine 

the acceptor density if donor density is 1012 cm-3. 

 

Solution 

                po = 4  1012 cm-3 

        no = 
2

i

o

n

p
 

                            
( )

2
10

10

1.5 10

4 10


= =


 5.625  107 cm-3 

If all impurities are ionized,  

  po - no   = NA - ND  

   NA   = po - no + ND  

  ND  = 1012 cm-3  

    NA =  4  1012 - 5.625  107 + 1012 

    = 5  1012 cm-3  

 

Problem 1.10 

The Fermi level in a silicon sample at 300 K is located at 0.3 eV below the bottom of the 

conduction band. The effective densities of states NC = 3.22  1019 cm-3 and NV = 1.83  1019 

cm-3. Determine (a) the electron and hole concentrations  (b) the intrinsic carrier concentration 

at 300 K. 

 

 

Solution 

  no  = NC  ( )
/C FE E

e kT
− −  

   = 3.22  1019 
0.3

0.026e
−

 

   = 3.14  1014 cm-3 

              EF - EV  =    Eg - (EC - EF) (see Fig. Sp. 1.10) 

   = 1.1 - 0.3 = 0.8 eV 

  po = NV ( )
/F VE E

e kT
− −  

   = 1.83  1019 
0.8

0.026e
−

 

   = 7.93  105 cm-3 

  ni  = 
/ 2gE kT

C VN N e
−

 

   = 
1.1

19 19 2 0.0263.22 10 1.83 10 e
−

   1^6 
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   = 1.578  1010 cm-3 

 

EC _____________________ 

EF _____________________ 

Ei _____________________ 

 

EV _____________________ 

 

Fig. Sp.1.10 

 

Problem 1.11 

The Fermi level in a silicon sample at equilibrium is located 0.40 eV below the middle of band 

gap at 300 K. 

a. Determine the probability of occupancy of a state located at the middle of band gap 

b. Determine the probability of occupancy of acceptor states if they are located 0.04 eV 

above the top of the valence band. 

 

Solution  

a. Probability of occupancy of the middle of band gap 

  f(Ei) = 
( )

1

1 /i FE E
e kT

−
+

 

   = 
0.4

0.026

1

1 e+

 

   = 2.08  10-7 

b. From Fig. Sp. 1.11, 

 EA - EF   = - [EF - EV - (EA - EV)]  

   = - [0.15 - 0.04] 

   =  - 0.11 eV 

0.8eV 

0.3eV 

Eg = 1.1eV 
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______________________________________          EC 

 
 

 

______________________________________          Ei 

 
 

______________________________________          EF 

 _______________________________________        EA 

______________________________________         EV 

 

 

Fig. Sp.1.11 

 

Probability of occupancy of acceptor state  

  f(EA) = 
( )

1

1 /A FE Ee kT−+
 

   = 
0.11

0.026

1

1 e
−

+

 = 0.9856 

Problem 1.12 

The intrinsic carrier concentration of silicon at 300 K is 1.5  1010 cm-3, n  = 1500 cm2/Vs and 

p = 450 cm2/Vs. The silicon sample is doped with donors of concentration 5  1016 cm3 and 

then compensated by acceptor doping. The compensated silicon sample has resistivity 1  cm. 

Determine acceptor concentration, assuming that the mobilities remain unchanged. 

 

Solution 

  ND  = 5  1016 cm-3 >> ni 

   no  = 5  1016 cm-3   

                =    
19 16

1 1

1.6 10 5 10 1500o nqn  −
=

   
 

   = 0.083 cm 

After compensation 

Case 1: ND > NA 

                =    
1

o nqn 
1cm 

  '

on  = 
19

1

1.6 10 1500− 
 

   = 4.16   1015 

  '

on  = ND - NA 

  NA  = ND - '

on  

   = 5   1016 - 4.16   1015 

   = 4.58   1016 cm-3 

Case 2: NA > ND 

0.11eV 

0.55eV 0.4eV 

0.15eV 

0.04eV 
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           =    
1

o pqp 
1cm 

  '

op  = 
19

1

1.6 10 450− 
 

   = 1.389   1016 

  '

op  = NA - ND  

  NA  = '

op + ND  

   = 1.389   1016 + 5   1016 

   = 6.389   1016 cm-3 

 

Problem 1.13 

An n-type silicon bar 0.1 cm long and 100 m2 in cross sectional area has a majority carrier 

concentration of 5 x 1015 cm-3 and electron mobility is 1300 cm2/Vs at 300 K. 

What is the resistance of the bar? 

 

Solution  

  no  =  5 × 1015 cm-3, A = 100 µm2 = 100 × 10-8 cm2 

   = 
1 1

o nqn 
=  

   =  
19 15

1

1.6 10 5 10 1300−   
= 0.962  cm 

  R  =  
L

A


 

   = 
8

0.962 0.1
96200

 100 10
cm

−


= 


 

   =  96.2 k  

 

Problem 1.14 

An intrinsic Ge sample at room temperature has resistivity of 50  cm. The sample is uniformly 

doped to the extent of 6 × 1013 Arsrnic atoms/cm3 and 1014 Boron atoms  per cm3. Find the 

conduction current density if an electric field of 4 V/cm is applied across the sample. µn = 3800 

cm2 / Vs; µp = 1800 cm2 / Vs. 

 

Solution  

   = 
1

( )i n pqn  +
 

  ni  = 
1

( )n pq  +
 

   =  
19

1

1.6 10 50(3800+1800)−
=

 
2.23 × 1013 cm-3 

  ND  =  6 × l013cm-3   NA = 1014 cm-3 

From charge neutrality equation, assuming that impurities are completely ionized  
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  po - no  = NA - ND 

   = 1014 - 6 × 1013 

   = 4 × 1013 cm-3 

  no - po  = 2

in  

             po-
2

i

o

n

p
= NA - ND 

           2

0p - (NA - ND) p0 - 
2

in =0 

  p0 = 
2 2( ) ( ) 4

2

A D A D iN N N N n−  − +
  

  p0 =
13 13 2 13 24 10 (4 10 ) 4 (2.2

2

3 10 )   +  
 

   = 5 × 1013 cm-3   (negative value neglected) 

  n0 = 
2

i

o

n

p
 

   =  
( )

2
13

13

2.23 10
 

5 10




 

   = 9.94 × 1012 cm-3 

  J  = q (µnno + µppo) x 

   = 1.6 × 10-19 (3800 × 9.94 × 1012 + 1800 × 5 × 1013) × 4 

   = 0.0817 A/cm2 

 

Problem 1.15 

      A sample of intrinsic semiconductor has resistance of 10 , at 364 K and 100  at 333 K, 

Assuming that this change is entirely due to the effect of variation of ni with temperature, 

calculate the band gap Ego of the semiconductor. 

 

Solution 

 At  T1  = 364 K  R = 10  

  T2  = 333 K         R = 100  

  ni  = 
3

/2 /22g gE kT E kT

C VN N e KT e
− −

 

      
( )1

( )2

2 21

2 1 1

( ) ( )( )

( ) ( ) ( )

T

T

L

i iA

L

i iA

T n TR T

R T T n T








= = =  

      

3
2 2

1

/ 2

21 2

/2

2 1 1

( )( ) 10

( ) 100 ( )

go

go

E kT

i

E kT

i

n TR T T e

R T n T T e

−

−

 
= = =  

 
 

              i.e.,   

3
2

1 1
2 2 12

1

1

10

Ego

k T T
T

e
T

−  −  
 

=  
 

 

           

3
2

1 1
2 2 12

1

1

10

Ego

k T T
T

e
T

−  −  
 

 = 
 
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3
2

1 1
2 333 364

364 1

333 10

Ego

ke
−

 −  
 = 

 
 

Taking natural logarithm 

 ln 0.11428  = 4(2.557 10 )
2

goE

k

−
−

   

 Ego  = 
23

4

2.169 2 1.38066 10

2.557 10

−

−

  


 

   = 2.34   10-19 J 

   = 
19

19

2.34 10

1.6 10
eV

−

−




=1.46eV 

 

Problem 1.16 

     Prove that the fractional change in conductivity of an intrinsic semiconductor is given by 

( )3

2 2

gEd dT

T kT




= + assuming that the change in conductivity is only due to the variation of intrinsic 

carrier concentration with temperature. 

 

Solution  

  ni  = 
/ 2gE kT

C VN N e
−

 

   =
( ) ( )

3
C V/22

1

Substituting values of N  and N

from equations 1.40  and 1.46

gE kT
K T e

−  
  
 

 

   = 2qni (µn + µp) 

  (T) = 2q
3

/22
1

gE kT
K T e

−
(µn + µp) = 

3
/22

2

gE kT
K T e

−
 

where K2 = 2K1q(µn + µp) 

Taking natural logarithm 

  ln  = ln K2 + 
2

3
ln

2 2

gE
T

kT
−   

On differentiation with respect to T 

        
3

2 2

gEd dT

T kT





 
= + 

 
 

 

Problem 1.17 

The conductivity of an intrinsic silicon sample at 300 K is 4.4 × 10-4 ( cm)-1. Determine the 

conductivity of the semi conductor if temperature rises to 315 K. 

 

Solution  

      
3

2 2

gEd dT

T kT





 
= + 

 
 

          = 4.4 × 10-4 ( cm)-1 

     dT   = 15 K 

     kT   = 0.026 eV 
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     T     = 300 K 

           new      =   + d  =  
3

1
2 2

gEdT

T kT

  
+ +  

   

 

           = 4.4 × 10-4 15 3 1.1
1

300 2 2 0.026

  
+ +  

  
 

           = 9.38 × 10-4 ( cm)-1 

 

Problem 1.18 

The resistivity o of a Ge sample is measured at 300 K. The sample is then remelted and doped 

with 4.4 × 1016 arsenic atoms cm-3. The new crystal has resistivity of 0.1  cm and is n-type. 

Determine the type and concentration of impurity atoms in the original sample and value of o. 

Assume n = 2 p = 3000 cm2/Vs. 

 

Solution 

After doping we have, 

            = 
1

0.1
n o

cm
q n

=   

          n0  = (1.6 × 10-19 × 3000 × 0.1)-1 

         = 2.083 × 1016 cm-3 

which is less than the added donor concentration ND = 4.4 × 1016 cm-3. 

 The original sample was p-type. 

  ND - NA = no 

                   NA = 4.4 × 1016 - 2.083 × 1016 

                = 2.317 × 1016 cm-3 

where NA is the acceptor doping in the original sample. 

     Therefore, for the original sample po = NA = 2.318 × 1016 cm-3 

     Resistivity of original sample po = 
0

1

pqp 
 

           po = (1.6 × 10-19 × 2.318 × 1016 × 1500)-1 

   = 0.179  cm 

 

Problem 1.19 

The Fermi-level position in an n-type Ge film is 0.2 eV above the intrinsic Fermi-level. The 

thickness of the film is 0.5 m. Calculate the sheet resistance of the film.  

 ni = 2.5 × 1013 cm-3, n = 3500 cm2 /Vs, p = 1500 cm2 /Vs, kT/q = 0.025 V. 

 

Solution 

           no = ( )/F iE E kT

in e
−  

    EF - Ei = 0.2 eV 

         
kT

q
= 0.025 V   kT = 0.025 eV 
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      no = 2.5 × 1013 e(0-2/0-025) 

  = 7.45 × 1016 

 p0 = 
( )132

16

0

2.5 10

7.45 10

in

n


=


 

  = 8.39 × 109 

   = q(non + p0p) 

  = 1.6 × 10-19 (7.45 × 1016 × 3500 + 8.39 × 109 × 1500) 

  = 41.72 ( cm)-1 

Resistance      R = . .
.

L L L

A wt t w

 
= =  

  = Rs. 
L

w
 where RS is sheet resistance 

          RS = 
4

1 1

41.72 0.5 10t t



 −
= =

 
     

  = 479.39 / 

 

Problem 1.20 

A GaAs sample is doped so that the electron and hole components of currents are equal in an 

applied electric field. Calculate the equilibrium electron-hole concentrations, the net doping and 

the sample resistivity at 300 K. 

         n = 8500 cm2/Vs,  p = 400 cm2 /Vs,  ni = 1.79 × 106 cm-3 

 

Solution 

 For a given electric field, 

       Jn drift  =   Jp drift     when      n = p  

 i.e.,    p po = n no    or    po = 0

n

p

n



   

 For GaAs    nopo = 2

in  

    no × 21.25 no = (1.79 × 106)2 

                 no = 3.88 × 105 cm-3 

        po = 21.25 × 3.88 × 105 

            = 8.25 × 106 cm-3 

po > no  Net doping = NA- ND = po - no 

      Net doping           = (8.25 × 106 - 3.88 × 105) 

            = 7.86 × 106 cm-3 

 Sample resistivity    = 
0

1

[ ]n p oq n p +
 

            = 
0

1

2 nq n
 

             = 
19 5

1

2 1.6 10 8500 3.88 10−    
  

            = 9.48  108  cm. 
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Problem 1.21 

     A silicon sample is doped with 1015 phosphorous atoms/cm3. At 300 K, calculate, the 

electron and hole concentrations and position of the Fermi level. Assume that the distribution of 

states in the conduction band is given by N(E)dE = 8  1020 EdE cm-3 where E is expressed in 

electron volts. Calculate the number of electrons between the energy interval 1.9 kT and 2.1 kT 

above the band edge EC. 

 

Solution 

  Let        ni  = 1.5 × 1010 cm-3 

   ND  = 1015 cm-3 >> ni  

    no = ND = 1015 cm-3 

   nopo  = (1.5 × 1010)2 

     po  = 2.25 × 105 cm-3 

   no  = ( )/F iE E kT

in e
−  

   EF  = Ei + kT ln 0

i

n

n
= Ei + 0.287 eV 

     EC - EF  = ( )
2

g

F i

E
E E− −  

    = 0.56 - 0.287 = 0.273 eV 

    At 300 K, EC - EF  = 0.273 eV 

    = 
0.273

0.026
kT  (Q 1 kT = 0.026 eV) 

    = 10.5 kT . 

Assuming that f(E) is constant from (EC + 1.9 kT) to (EC + 2.1 kT), 

  f(EC +2kT)  = 
( 2 )/ ( 2 )/

1 1

1 1C F C FE kT E kT E E kT kT
e e

+ − − +
=

+ +
 

    
(10.55 2) / 12.5

1 1

1 1kT kTe e+
= = =

+ +
 3.726 × 10-6 

 

 

-------------------------------------------- 

-------------------------------------------- 

-------------------------------------------- 

_____________________________ 

_____________________________ 

_____________________________ 

___________________________ 

Fig. Sp. 1.21 

E=EC+2kT 

 
        EC 

 

        EF 
 
 

       Ei 

 
        EV 

 

 

 

2.1 kT 

2 kT 

1.9 kT 

0.273eV = 10.55 kT 

12.55 kT 
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     To find the number of electrons (n) in the energy interval 1.9 kT to 2.1 kT above  EC, 

multiply the probability of occupancy at 2kT above EC with total number of states this energy 

range. See also Fig. Sp.1.21. 

  ∆n = f(EC + 2kT) 
2.1

1.9

( )

kT

kT

N E dE  

   = 3.726 × 10-6 × 8 × 1020 
2.1

19

kT

kT

EdE  

   = 2.981 × 1015 × 
3
2

2.1

19

2

3

kT

kT

E 
 

   kT = 0.026 eV 

   = 3.53 × 1012 cm-3. 

 

Problem 1.22 

A semiconductor is known to have a band gap of 1.25 eV and intrinsic carrier concentraton of 

1.6 × 1010 cm-3 at room temperature. Estimate NC and NV, if * *: 4 :1.n pm m =  

 

Solution  

  2

in  = NC NV ( )/C VE E kT
e

− −  

  NC NV  = 2

in
( )/C VE E kT

e
− −  

   = (1.6 × 1010)2 
1.25
0.025e  

   = 1.327 × 1042 cm-6    (A) 

  ( )

3
2

3
2

*

*
4C n

V p

N m

N m

 
= = 

 
 

 

    NC = 8NV 

Substituting in (A) 

  8 2

VN  = 1.327 × 1042 

  NV  = 4.07 × 1020 cm-3 

  NC  = 3.26 × 1021 cm-3 

 

Problem 1.23 

The current required to feed the hole injection at x = 0 is given by Ip(x=0) = qADp∆p/Lp. Show 

that this current can be obtained by integrating the charge stored in the steady-state hoie 

distribution  p(x) and then dividing by the average hole lifetime p. Explain why this approach 

gives Ip(x = 0). 

 

Solution 

  Qp = qA × 
0

( )p x dx


  

  Qp =qA
/

0

px L
pe dx


−

  

   = qALp∆p 
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   = p p

p p

Q qAL p

 


=  

      Dpp = 2

pL  

i.e.,         p p

p p

D L

L 
=  

   Ip = qADp. 
p

p


 

      The charge distribution Qp disappears due to recombination in every p  seconds. Therefore, 

the steady-state distribution is retained by injection in every p seconds.  

    hole current injected at x = 0 is p

p

Q


 

 

Problem 1.24 

In figure Sp.1.24, the steady-state excess hole concentration at x = 0 is ∆p = 1015 cm-3. The semi 

infinite Ge bar has a cross-sectional area of 10-2 cm2. The hole diffusion length Lp is 10-3 cm and 

the hole lifetime is 10-4 s. 

a. What is the steady-state stored charge Qp in the exponential excess hole distribution? 

b. What is the hole current Ip(x= 0) feeding this steady-state distribution. 

c. What is the slope of the distribution in cm-4 at x = 0. 

 
Fig. Sp. 1.24 

 

Solution  

 a.   Qp = qA Lp ∆p 

    = 1.6 × 10-19 × 10-2 × 10-3 × 1015 

    = 1.6 × 10-9 C 

 b.  Ip  = p

p

Q


 

    = 
9

4

1.6 10

10

−

−


= 1.6 × 10-5 A 

 c.  
5

19 2 2

0

1.6 10
 

1.6 10  10 10

p

x p

Id p

dx qAD

 −

− − −

=

− 
= =

 
 

    = -1018 cm-4. 
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Problem 1.25 

A p-type semiconductor sample with a resistivity of 40 cm at 300 K is uniformly illuminated 

with light that generates 1013 EHP cm-3 s-1. In steady-state, calculate the change in resistivity of 

the sample caused by light. If light is switched off at t = 0, calculate the time required for the 

excess conductivity to drop to one tenth of its value at t=0. Assume n = 10-6 s. n = 3900 

cm2/Vs, p = 1900 cm2/Vs, ni = 2.4 × l013cm-3 

 

Solution 

   p = n  = Gopn 

    = 1013 × 10-6 = 107 cm-3 

 Photo conductivity op  = q(n + p) p 

    = 1.6 × 10-19 (3900 + 1900) 107  

    = 9.28 × 10-9 ( cm)-1 

 Original-conductivity  = 
1


=

1

40
 = 2.5 × 10-2 ( cm)-1 

which is large compared to . 

     Therefore, change in  is negligible.  drops to 10% when p and n drops to 10% of its 

initial value. 

   n/( ) 10
0.1

100

tn t
e

n

 −
= = =


 

   / 1

10
nt T

e
−

=  

         t = n ln 10 

           = 10-6 ×  2.302 

           = 2.3 × 10-6 s. 

 

Problem 1.26 

An n-type silicon sample with no >> ni and n = 2p is subjected to a steady illumination such 

that the electron concentration doubles from its thermal equilibrium value. By what factor will 

the specimen's conductivity increase? 

 

Solution 

Let no be the equilibrium electron concentration in the sample. Since the sample is  n-type no >> 

po. Therefore equilibrium conductivity  

  o = qnon = qno . 2p = 2qnop 

 Let n and p be the new electron and hole concentrations. As the electron concentration 

doubles 

   n = 2no     i.e.,  n = no = p 

    p = po + p  p = no 

Therefore conductivity of specimen with illumination 

    = qnn + qpp  

   = q(2no)2p + qnop  

   = 4qnop + qnop  

   = 5qnop  
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5

2.5
2

o p

o o p

qn

qn



 
= =  

     Therefore the conductivity of the specimen will increase by a factor of 2.5. 

 

Problem 1.27 

The current I in a forward biased p-n junction in Fig. Sp. 1.27 is entirely due to diffusion of 

holes from x = 0 to x = L. The injected hole concentration distribution in the n-region is linear 

as shown in figure with p(0) = 1012 /cm3 and L = 10-3 cm. 

      Determine (a) the current density in the diode assuming that Dp = 12 cm2/s (b) the velocity 

of holes in the n-region at x = 0  

 

 
Fig. Sp. 1.27 

 

Solution  

  
( ) (0) ( )

0

dp x p p L

dx L

−
=

−
 

   
12

15 4

3

10 0
10

0 10
cm−

−

−
= = −

−
 

  J = -qDp 
( )dp x

dx
= -1.6 × 10-19 × 12 × -1015 

   = 1.92 × 10-3 A/cm2 = 1.92 mA/cm2 

  J(0) = p(0)qv 

  velocity v = 
3

4

10 12

1.92 10
1.2 10 cm / s

1 .6 10 10

−

−


= 

 
 

 

Problem 1.28 

Interpret the energy band diagram shown in Fig. Sp.1.28. 
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Fig. Sp.1.28 

 

Solution 

 a. Band gap = 2 eV, 

 b. n-type semiconductor, 

 c. non equilibrium, 0,FdE

dx
  

 d. External electric field in the negative x-direction, 

 e. n = p = 0 as   Fn = Fp = EF, 

 f. Specimen is uniformly doped (Q  EC - EF is constant), 

 g. Potential difference between the ends of the semiconductor 

 

   V = 
1

1 .
( )

E eV
V

q q


= = −

− −
 

 

 h. No excess carriers present. 

 

Problem 1.29 

 Interpret the energy band diagram shown in Fig. Sp.1.29. 

 

 
Fig. Sp.1.29 
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Solution 

a. The specimen is not in equilibrium 0FdE

dx

 
 

 
. 

b. The energy band diagram represents a uniformly doped n-type semiconductor 

with excess carriers injected from x = 0. 

c. As the energy bands are flat no electric field exist in the semiconductor. 

d. Excess carrier injection is low-level as the shift in majority carrier Fermi-level 

(Fn) is negligible. 

e. Seperation of quasi Fermi-levels decreases from left to right and join together at 

the end. This indicates that injected excess carriers diffuse into the bar, 

undergoes. recombination and decays to zero at the end of the bar. 

Problem 1.30 

A Silicon sample is doped with 1015 donors cm-3. Calculate the excess electron and hole 

concentrations n = p required to increase the sample conductivity by 15%. What carrier 

generation rate is required to maintain this excess concentration. Assume p = 0.3 n, p = 10-6 s, 

T = 300 K. 

 

Solution  

    no  = 1015 cm-3 

Since specimen is n-type 

    = qnno  = 1.6 × 10-19 × l015 n  

     = 1.6 × 10-4 n 

For sample conductivity to increase by 15% 

     = q(n +p) p =  0.15  

 1.6 × l0-19 (n + 0.3n)    p  = 0.15 × 1.6 × 10-4 n 

                 p  = 1.15 × 1014 cm-3 = n 

 Carrier generation rate    G  =  
p

p


 

      =  
14

6

1.15 10

10−


= 1.15 × 1020 cm-3 s-1. 

Problem 1.31 

An n-type bar of GaAs has a length / and an area of cross-section A. The bar is illuminated with 

light that generates Gop electron hole pairs cm-3 s-1 uniformly. Assuming the hole mobility to be 

negligible, show that the steady-state photo current in the bar can be written as Iop = qAlGop 

p

t




where t is the average transit time of electrons through the bar and p is the minority carrier 

lifetime. 

 

Solution  

   n = p = Gop p 

            = d

n

v


 

Since n >> p, op = qn n 
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Photo current Iop = op  = qAn n  = qAGop p vd 

but                       vd   = 
l

t
 

    Iop  = qAlGop
p

t




 

Problem 1.32 

A Ge sample is uniformly doped with 5 × 1016 atoms/cm3 of In. Assume all impurity atoms are 

ionized and take ni = 2 × 1013 cm-3 at 290 K. 

a. Calculate the electron and hole concentrations in the sample. 

b. Assume that the intrinsic concentration in Ge increases by 6% per oK rise in 

temperature, estimate the temperature (T) at which the sample becomes intrinsic. 

 

Solution 

 a. Indium is acceptor impurity in Germanium 

 so NA = 5 × 1016 cm-3 >> ni 

      po = 5 × 1016 cm-3 

     no = 
( )

2
132

16

2 10
 

5 10

i

o

n

p


=


 

         = 8 × 109 cm-3 

 b. At intrinsic temperature NA  5ni 

        ni = 
165 10

 
5 5

AN 
= =1016 cm-3 

It is given that 

          
1 i

i

dn

n dT
  = 0.06 

          i

i

dn

n
      = 0.06 dT 

Integrating, ln ni = 0.06T + C; where C is constant of integration 

         ni       = C e006T 

       ni (T)      = C e0.06T = 1016     (A) 

    ni (290)      = C e(0.06 × 290) =2 × 1013       (B) 

Equations (A)  (B) 

          
0.06T 16

17.4 13

C e 10

C e 2 10
=


 

    e(0.06T-17.4)    = 500 

              0.06T - 17.4 = ln 500 

               T  = 
6.215 17.4

393.6 .
0.06

K
+

=  
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▪ Points to Remember 

 

• Heisenberg uncertainty principle 

  Px  h ;  E t  h 

• de Broglie wavelength  = 
h

mv
 

• Time independant Schrodinger wave equation 

  
2

2 2

2m

x h


+


(E - V) = 0 

• Fermi Dirac distribution function 

  f(E) = 
( )FE E /kT

1

1  e
−

+
 

• Effective mass 

  m* = 
2

2

2

d E

dK

h
 

• Thermal generation rate g(T) = r 
2

in  

• Recombination rate r = r np 

• Density of states in conduction band 

   NC = 2 

3/2
*

2

2 nm kT

h

 
 
 

 

• Density of states in valence band  

   NV = 2 

3/2
*

2

2 pm kT

h

 
 
 
 

 

   no = ( )/ ( )/C F i F iE E kT n e E E kT

CN e
− − = −  

   po = ( )/ ( )/F V i i FE E kT n e E E kT

VN e
− − = −  

• Mass action law, 

  no po = 2

in  

  ni(T) = 
/2 /23/2g goE kT E kT

C VN N e KT e
− −

=  

• For T > 50 K 

  ni(T) = 1.76 × l016 T3/2 e-4550/T cm-3    for    Ge 

  ni(T) = 3.88 × l016 T3/2 e-7000/T  cm-3     for    Si 

 

•  Jn drift = -nqvx   = n x  

•  Jp drift = pqvx = p x  

• Conductivity n = qnn;  p = qpp 

       Mobility n   =   
*

x

n x

vqt

m

−
=

E
 

         p    =   
*

x

p x

vqt

m
=

E
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• FdE

dx
   = 0  at thermal equilibrium 

• By Hall effect 

  po = x z

AB

I B

qtV
 

   = 
/

/

CD xV I

L wt
 

  RH = 
1

oqp
 or 

1

oqn

−
 

   = HR


 

•  n = 
1

r op
 

  p = 
1

r on
 

• For direct recombination 

  n = p = gop p 

• Under non-equilibrium 

  np = 2

in
( )/n pF F kT

e
−

 

• Diffusion currents 

 

  Jp diff = -qDp.
dp

dx
 

  Jn diff = qDn.
dn

dx
 

• Einstein relation 

    
n p

Dn Dp kT

q 
= =    

• Continuity equations 

   
1

( , )
p

p

Jp p
x t

t q x





 −
= −

 
 

   
1

( , ) n

n

Jn n
x t

t q x





 −
= −

 
 

• Diffusion length is the average distance a charge carrier diffuse before it recombincs. 

• Minority carrier lifetime is the average time a charge carrier survive without 

recombination after it is generated. 

• Built-in field is the field that exist in a semiconductor or semiconductor device at 

equilibrium. 
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▪ Exercise Problems 

 

(l) (a)  The position of an electron is determined with an error less than 0.5 Å. What is the 

minimum  uncertainty in its momentum? 

     (b)    Energy of an electron is measured with an uncertainty of 0.5 eV. What is the minimum 

uncertainty in the time over which the measurement was made? 

 Ans: (a) 2.109 × 10-26 gcm/s   (b) 1.316 × 10-15 s. 

(2)         Find the nearest neighbour distance in the following lattices 

 (a) Body centered cubic 

 (b) Face centered cubic and 

 (c) A diamond lattice  

 Ans: (a) 
3

2

a
 (b) 

2

a
  (c) 

3

4

a
 

(3)         For a particle that ha.s a mass of 2 g and energy 1.5 kT, determine de-Broglie wave 

length at 300 K. kT = 1.24 eV. 

 Ans: 6.0699 × 10-25cm. 

(4)  The antenna of an AM radiostation transmitter radiates 10 kW of power at 1250 KHz. 

Calculate 

 (a) Energy of each radiated photon 

 (b) Number of photons radiated per second 

 Ans: (a) 8.283 × 10-28 J. (b) 1.207 × 1031. 

(5)  At 300 K, what percentage of the valence electrons in a cm3 of silicon are located in the 

conduction band? Repeat for 500 K. 

 Ans: 7.51 × 10-12%, 1.805 × l0-7%  

(6)  The average energy of a free electron is given by E = 
3

2

kT
where k is Boltzmann 

constant, T is temperature in degree Kelvin. Determine 

 (a) Velocity of electron 

 (b) The de Brogue wave length in m and Å 

 (c) Momentum at 300 K 

 Ans: (a) 3.694 × l03 cm/s (b) 1.969 × 10-12 m, 0.01969 Å (c) 33.64 × 10-25 gcm/s.  

(7)  Find the resistivity of a silicon sample at 300 K if it is doped with a pentavalent 

impurity such that there is one impurity atom for 107 silicon atoms. n = 1350 cm2/Vs, 

p = 480 cm2/Vs. 

 Ans: 0.9255  cm. 

(8)  A Ge sample is doped with 1014 As atoms/cm3 and 7 × 1013 Boron atoms/cm3 at 300 K. 

The intrinsic resistivity at this temperature equals 60  cm. Determine the total 

conduction current density, if an electric field of 2 V/cm is applied. Assume n = 3900 

cm2/Vs and p = 1900 cm2 /Vs. 

 Ans: 54.5 mA/cm2. 

(9)  Show that, the ratio of maximum resistivity to intrinsic resistivity of a semiconductor is 

given by 

max

2

n p

i n p

 

  

+
=  
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(10)  Calculate the intrinsic resistivity of Ge at 300 K. If a donor type impurity is added to the 

extent of 1 atom per 108 Ge atoms, calculate the resistivity, 
n  =3900 cm2/Vs,  p = 

1900 cm2/Vs, ni = 2.5 × 1013 cm-3. 

 Ans: 43.05  cm, 3.6208  cm. 

(11)  A silicon sample of length 2 cm and area of cross-section 2 mm2 at 300 K is doped with 

1017 atoms/cm3 of As and 9 × 1016 cm-3 of Boron. Compute the specimen's resistance 

and compare the contribution of electron and holes to the total conductivity. Assume n 

= 1350 cm2/Vs and p = 480 cm2/Vs. 

 Ans: 0.9247; 1n n

p

 

 
  = 1.25 × 1012 

(12)  A Si sample isjdoped with 1015 Boron atoms and a certain number of shallow donors. 

The Fermi-level is 0.33 eV above Ei at 300 K. What is the donor concentration? 

 Take ni as 1.5 × 1010 cm-3. 

 Ans: 5.878 × 1015 cm-3. 

(13)  In a semiconductor at room temperature (300 K) the intrinsic carrier concentration and 

resistivity are 1.5 × l016/m3 and 2 × 103  m respectively. It is converted to an extrinsic 

semiconductor with a doping concentration of l020/m3. For extrinsic semiconductor 

calcualte  

 1. Minority carrier concentration, 

 2. Resistivity, 

 3. Shift in Fermi-level due to doping and 

 4. Minority carrier concentration when its temperature is raised to a value at which 

intrinsic carrier concentration doubles. Assume n  = p, kT = 26 m eV at room 

temperature.  

 Ans: (a) 2.25 × 1012 m-3 (b) 6.49 × 10-3  m (c) 0.2289 eV (d) 9 × 1012 m-3. 

(14) A Ge sample is properly contacted and oriented in a 5 kG magnetic field as in Fig. 1.40. 

The current is 4 mA. The sample dimensions are w = 0.25 mm, t = 50 m and L = 2.5 

mm. The following measurements are made. VAB = -2.5 mV and VCD = 170 mV. Find 

the type and concentration of majority carriers and its mobility. 

 Ans: n-type, n0 = 9.98 × 1016 cm-3, 2943.39 cm2/Vs. 

(15) Boron is diffused into an intrinsic Si sample giving the acceptor distribution shown in 

Fig. Ex.1.15. Sketch the equilirbiuin energy band diagram and show the direction of the 

electric field. 

 
Fig. Ex.1.15 
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(16)  An n-type silicon bar is doped uniformly by phosphorus atoms to a concentration of 4.5 

× 1015 cm-3. The bar has cross-section of 1 mm2 and length of 10 cm. It is illuminated 

uniformly for regions x < 0 as shown in Fig. Ex. 1.16. 

 
Fig. Ex.1.16 

 

 Assume optical generation rate 1021 EHP cm-3 s -1 for this case. The hole lifetime and 

electron lifetime are equal and is equal to 1 s . Evaluate the hole and electron diffusion 

currents and electron drift current at x = 34.6 m. Given Dp = 12 cm2/s Dn = 30 cm2/s q 

= 1.6 × 10-19 C, kT/q = 26 mV. 

 Ans: Ip diff = 2.043 mA, In diff = -4.665 mA. In drift = 2.622 mA       

(17)  A silicon sample is doped uniformly with 1015 As atoms cm-3 and has p = 1 s 

 (a) Determine the photo generation rate that will produce 2 × 1013 excess EHPs cm-3 in 

the steady-state. 

 (b) Calculate the conductivity of the sample and the p'osition of the electron and hole 

quasi Fermi levels in the steady-state at 300 K. 

 Assume µn = 1350 cm2 /Vs, µp = 480 cm2/Vs and ni = 1.5 × 1010 cm-3. 

 Ans: (a) 2 × l019 EHP/cm3s (b) 0.22 (cm)-1, Fn - Ei = 0.289eV Ei - Fp = 0.1798 eV 

(18)  A homogeneous semiconductor bar is illuminated uniformly by a penetrating light that 

generates EHPs at a constant rate GL cm-3 s-1. Assuming low-level injection, 

 (a) Calculate the excess carrier concentration as a function of time if light is switched 

on at t = 0 

 (b) Determine the steady-state values of electron and hole concentrations and show that 

the photo conductivity () of the sample is given by q(µn + µp) GLp. 

(19)  A Germanium sample doped with 1017 cm-3 donors at 300 K is optically excited such 

that gop = 1020 EHP/(cm3 - s) and n = p = 10s. Find the separation between quasi 

Fermi-levels. 

 Ans: Fn - Fp = 0.3118 eV.                                                    

(20)  A sample of n-type silicon has dark resistivity of 1 kcm at 300 K. The sample is 

illuminated uniformly to generate 1021 EHPs cm-3 s-1. The hole lifetime is 1 µs. 

Calculate the sample resistivity and the percentage change in resistivity after 

illumination. Assume µn = 1350 cm2/Vs. µp = 480 cm2/Vs and ni = 1.5 × 1010 cm-3. 

 Ans: 1.0034 k  cm, 0.3411%  

(21)  A semiconductor (n-type) bar is injected at one end by minority carrier holes and an 

electric field of 100 V/cm is uniformly applied along the length of the bar that move the 

holes a distance of 0.1 cm in 3µs. Determine  

 (a) The drift velocity of holes             

 (b) The diffusion constant of holes at T = 300 K   

 Ans: (a) 3.33 × 104 cm/s (b) 8.67 cm2/s. 
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(22)  Given a Ge sample that has at 300 K ni = 2.5 × 1013 cm-3, µn  = 3900 cm2/Vs and µp = 

1900 cm2/Vs. Determine all the possible values of hole and electron densities that cause 

the conductivity of a semiconductor to be equal to the intrinsic conductivity.  

(23) A hole current of 10-5 A/cm2 is injected into the side (x = 0) of a long n-silicon. 

Assuming that holes flow only by diffusion and that at very large values of x, the 

distribution of excess holes decays to zero, Determine  

 (a) The steady-state excess hole density at x = 0 

 (b) Hole current density at x = 100 µm. Given µp = 480 cm2/Vs µn  = 1350 cm2/Vs and 

the lifetime of holes is 2.5 µs 

 Ans: (a) 2.794 × 1010 cm-3 (b) 1.667 × 10-6 A/cm2. 

(24) Draw the equilibrium energy band diagram of an n-type silicon at 300 K with following 

doping profile. 

 

 
Fig. Ex.1.24 

 

(25)  In a p-type semiconductor the Fermi-level lies 0.4 eV above the valence band. If the 

concentration of acceptor atoms is trippled find the new position of Fermi-level. 

 

▪ Review Questions 

 

(1) What is resistivity range of semiconductors? 

(2) What are the advantages of silicon over other semiconductor materials? 

(3) How are semiconductors classified? 

(4) Compare classical mechanics and quantum mechanics. Why is quantum mechanics used in 

the study of semiconductors? 

 

(5) Explain Heisenberg uncertainty principle. 

(6) What are the postulates of quantum mechanics? 

(7) Write one dimensional time independent Schrodinger wave equation. List few of its 

applications. 

(8) Explain tunneling mechanism with the help of quantum mechanics. 

(9) Explain Fermi-Dirac, Maxwell-Boltzmann and Bose-Einstein statistics. 

(10) How do Fermi-level position vary with doping in a semiconductor? 

(11) Define photon and phonon. 

(12) What are the different types of bonds that exist in solids? 

(13) Distinguish between single crystalline and poly crystalline materials. 

(14) Define the following terms related to crystal structure. 

ND(x) 
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  (a) Unit cell 

  (b) Primitive unit cell, 

  (c) Co-ordination number, 

  (d) Tetrahedral radius, 

  (e) Lattice constant and 

  (f) Packing efficiency. 

(15) What are different cubic crystal structures? 

(16) How are crystal planes and directions designated? 

(17) Explain the formation of energy bands in carbon. 

(18) Distinguish between the energy band diagrams of metals, semiconductors and  insulators. 

(19) Distinguish between direct and indirect bandgap semiconductors. 

(20) Explain effective mass. 

(21) Explain the conduction process by holes. 

(22) Draw the energy band diagram of 

 (a) Intrinsic semiconductor, 

 (b) n-type semiconductor and 

 (c) p-type semiconductor at 0 K and at 300 K. Show the donor/acceptor levels also. 

(23) Explain Fermi-Dirac distribution function. Plot it as a function of energy (E) for different 

temperatures. 

(24) Explain graphical estimation of carrier concentration in a semiconductor. 

(25) Derive the relation nopo = 2

in  

(26) Derive no = ni 
( )/F iE E kT

e
−   po = ni 

( )/i FE E kT
e

−  

(27) Explain temperature dependence of intrinsic carrier concentration with mathematical model 

and figure. 

(28) List values of ni for Si, Ge, GaAs at 300 K. 

(29) Explain temperature dependence of majority carrier concentration in a semiconductor. 

(30) What is the charge of n-type semiconductor? Explain. 

(31) What is the use of charge neutrality equation? 

(32) Show that Lp is the average distance a charge carrier diffuse before it recombines. 

(33) Derive expression for conductivity of a semiconductor. 

(34) Why is the conductivity of a silicon sample minimum when it is slightly p-type? 

(35) Derive the expression for minimum conductivity of a semiconductor. 

(36) Find expression for i/min of semiconductor. 

(37) What is meant by compensation? 

(38) What is thermal relaxation time? 

(39) What are the scattering mechanisms in a semiconductor? 

(40) Explain temperature and doping dependence of mobility. 

(41) Show that the gradient in Fermi-level is zero under thermal equilibrium. 

(42) Explain Hall Effect. Explain the procedure to measure majority carrier concentration and   

mobility of a semiconductor specimen. 

(43)  Explain the variation of drift velocity with electric field for Si and GaAs.  

(44) Explain the transient decay of excess carriers in a semiconductor with direct recombination. 

What is minority carrier lifetime? 

(45) Define quasi Fermi-level. When do they exist? 
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(46) What are the different recombination mechanisms? 

(47) What is Auger recombination? 

(48) What are the origins of recombination centres? 

(49) Explain diffusion process. Derive expression for diffusion current. 

(50) How do the energy band diagram, change with application of electric field? 

(51) State and derive Einstein relation. 

(52) Write continuity equation. What are its applications? 

(53) Derive continuity equation. 

(54) Derive steady-state diffusion equations. 

(55) How is minority carrier mobility and diffusion constant measured? Explain with diagrams. 

(56) You have a Ge device and Si device with comparable dopings. Which one can be operated 

at higher temperature? Why? 

(57) Show that life time is the average time a charge carrier survives without recombination 

after it is generated. 

 

 
 

 


